///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2020- Equinor ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigFemPartResultCalculatorStressAnisotropy.h" #include "RigFemPart.h" #include "RigFemPartCollection.h" #include "RigFemPartResultsCollection.h" #include "RigFemResultAddress.h" #include "RigFemScalarResultFrames.h" #include "cafProgressInfo.h" #include //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigFemPartResultCalculatorStressAnisotropy::RigFemPartResultCalculatorStressAnisotropy( RigFemPartResultsCollection& collection ) : RigFemPartResultCalculator( collection ) { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigFemPartResultCalculatorStressAnisotropy::~RigFemPartResultCalculatorStressAnisotropy() { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RigFemPartResultCalculatorStressAnisotropy::isMatching( const RigFemResultAddress& resVarAddr ) const { return isAnisotropyResult( resVarAddr ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigFemScalarResultFrames* RigFemPartResultCalculatorStressAnisotropy::calculate( int partIndex, const RigFemResultAddress& resVarAddr ) { CVF_ASSERT( isMatching( resVarAddr ) ); caf::ProgressInfo frameCountProgress( m_resultCollection->frameCount() * 4, "" ); frameCountProgress.setProgressDescription( "Calculating " + QString::fromStdString( resVarAddr.fieldName + ": " + resVarAddr.componentName ) ); RigFemScalarResultFrames* s1Frames = nullptr; { auto task = frameCountProgress.task( "Loading S1.", m_resultCollection->frameCount() ); s1Frames = m_resultCollection->findOrLoadScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "S1" ) ); } RigFemScalarResultFrames* s2Frames = nullptr; { auto task = frameCountProgress.task( "Loading S2.", m_resultCollection->frameCount() ); s2Frames = m_resultCollection->findOrLoadScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "S2" ) ); } RigFemScalarResultFrames* s3Frames = nullptr; { auto task = frameCountProgress.task( "Loading S3.", m_resultCollection->frameCount() ); s3Frames = m_resultCollection->findOrLoadScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "S3" ) ); } RigFemScalarResultFrames* s12Frames = m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "SA12" ) ); RigFemScalarResultFrames* s13Frames = m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "SA13" ) ); RigFemScalarResultFrames* s23Frames = m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "SA23" ) ); int frameCount = s1Frames->frameCount(); for ( int fIdx = 0; fIdx < frameCount; ++fIdx ) { auto task = frameCountProgress.task( QString( "Calculating %1/%2." ).arg( fIdx ).arg( frameCount - 1 ) ); const std::vector& s1 = s1Frames->frameData( fIdx ); const std::vector& s2 = s2Frames->frameData( fIdx ); const std::vector& s3 = s3Frames->frameData( fIdx ); std::vector& s12 = s12Frames->frameData( fIdx ); std::vector& s13 = s13Frames->frameData( fIdx ); std::vector& s23 = s23Frames->frameData( fIdx ); size_t valCount = s1.size(); s12.resize( valCount ); s13.resize( valCount ); s23.resize( valCount ); #pragma omp parallel for schedule( dynamic ) for ( long vIdx = 0; vIdx < static_cast( valCount ); ++vIdx ) { s12[vIdx] = 2.0 * ( s1[vIdx] - s2[vIdx] ) / ( s1[vIdx] + s2[vIdx] ); s13[vIdx] = 2.0 * ( s1[vIdx] - s3[vIdx] ) / ( s1[vIdx] + s3[vIdx] ); s23[vIdx] = 2.0 * ( s2[vIdx] - s3[vIdx] ) / ( s2[vIdx] + s3[vIdx] ); } } RigFemScalarResultFrames* requestedStress = m_resultCollection->findOrLoadScalarResult( partIndex, resVarAddr ); return requestedStress; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigFemScalarResultFrames* RigFemPartResultCalculatorStressAnisotropy::calculateTimeLapse( int partIndex, const RigFemResultAddress& resVarAddr ) { CVF_ASSERT( isMatching( resVarAddr ) ); caf::ProgressInfo frameCountProgress( m_resultCollection->frameCount() * 4, "" ); frameCountProgress.setProgressDescription( "Calculating " + QString::fromStdString( resVarAddr.fieldName + ": " + resVarAddr.componentName ) ); RigFemScalarResultFrames* s1Frames = nullptr; { auto task = frameCountProgress.task( "Loading S1.", m_resultCollection->frameCount() ); s1Frames = m_resultCollection->findOrLoadScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "S1" ) ); } RigFemScalarResultFrames* s2Frames = nullptr; { auto task = frameCountProgress.task( "Loading S2.", m_resultCollection->frameCount() ); s2Frames = m_resultCollection->findOrLoadScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "S2" ) ); } RigFemScalarResultFrames* s3Frames = nullptr; { auto task = frameCountProgress.task( "Loading S3.", m_resultCollection->frameCount() ); s3Frames = m_resultCollection->findOrLoadScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "S3" ) ); } RigFemScalarResultFrames* s12Frames = m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "SA12", resVarAddr.timeLapseBaseFrameIdx ) ); RigFemScalarResultFrames* s13Frames = m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "SA13", resVarAddr.timeLapseBaseFrameIdx ) ); RigFemScalarResultFrames* s23Frames = m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "SA23", resVarAddr.timeLapseBaseFrameIdx ) ); float inf = std::numeric_limits::infinity(); int frameCount = s1Frames->frameCount(); int baseTimeStep = resVarAddr.timeLapseBaseFrameIdx; for ( int fIdx = 0; fIdx < frameCount; ++fIdx ) { auto task = frameCountProgress.task( QString( "Calculating %1/%2." ).arg( fIdx ).arg( frameCount - 1 ) ); const std::vector& s1t = s1Frames->frameData( fIdx ); const std::vector& s2t = s2Frames->frameData( fIdx ); const std::vector& s3t = s3Frames->frameData( fIdx ); const std::vector& s1b = s1Frames->frameData( baseTimeStep ); const std::vector& s2b = s2Frames->frameData( baseTimeStep ); const std::vector& s3b = s3Frames->frameData( baseTimeStep ); std::vector& s12 = s12Frames->frameData( fIdx ); std::vector& s13 = s13Frames->frameData( fIdx ); std::vector& s23 = s23Frames->frameData( fIdx ); size_t valCount = s1t.size(); s12.resize( valCount, 0.0 ); s13.resize( valCount, 0.0 ); s23.resize( valCount, 0.0 ); double epsilon = 0.0000001; #pragma omp parallel for schedule( dynamic ) for ( long vIdx = 0; vIdx < static_cast( valCount ); ++vIdx ) { if ( fIdx != baseTimeStep ) { double diffS1 = s1t[vIdx] - s1b[vIdx]; double diffS2 = s2t[vIdx] - s2b[vIdx]; double diffS3 = s3t[vIdx] - s3b[vIdx]; if ( std::abs( diffS1 + diffS2 ) > epsilon ) s12[vIdx] = 2.0 * ( diffS1 - diffS2 ) / ( diffS1 + diffS2 ); else s12[vIdx] = inf; if ( std::abs( diffS1 + diffS3 ) > epsilon ) s13[vIdx] = 2.0 * ( diffS1 - diffS3 ) / ( diffS1 + diffS3 ); else s13[vIdx] = inf; if ( std::abs( diffS2 + diffS3 ) > epsilon ) s23[vIdx] = 2.0 * ( diffS2 - diffS3 ) / ( diffS2 + diffS3 ); else s23[vIdx] = inf; } } } RigFemScalarResultFrames* requestedStress = m_resultCollection->findOrLoadScalarResult( partIndex, resVarAddr ); return requestedStress; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RigFemPartResultCalculatorStressAnisotropy::isAnisotropyResult( const RigFemResultAddress& resVarAddr ) { return ( ( ( resVarAddr.fieldName == "ST" || resVarAddr.fieldName == "SE" ) && ( resVarAddr.componentName == "SA12" || resVarAddr.componentName == "SA13" || resVarAddr.componentName == "SA23" ) ) ); }