///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2017 Statoil ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigAccWellFlowCalculator.h" #include "RigSingleWellResultsData.h" #include "RigMainGrid.h" #include "RigActiveCellInfo.h" #include "RigFlowDiagResults.h" #include "RigSimulationWellCoordsAndMD.h" //================================================================================================== /// /// //================================================================================================== //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- size_t RigEclCellIndexCalculator::resultCellIndex(size_t gridIndex, size_t gridCellIndex) const { const RigGridBase* grid = m_mainGrid->gridByIndex(gridIndex); size_t reservoirCellIndex = grid->reservoirCellIndex(gridCellIndex); return m_activeCellInfo->cellResultIndex(reservoirCellIndex); } //================================================================================================== /// /// //================================================================================================== //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigAccWellFlowCalculator::RigAccWellFlowCalculator(const std::vector< std::vector >& pipeBranchesCLCoords, const std::vector< std::vector >& pipeBranchesCellIds, const std::map* >& tracerCellFractionValues, const RigEclCellIndexCalculator cellIndexCalculator, double smallContribThreshold, bool isProducer) : m_pipeBranchesCLCoords(pipeBranchesCLCoords), m_pipeBranchesCellIds(pipeBranchesCellIds), m_tracerCellFractionValues(&tracerCellFractionValues), m_cellIndexCalculator(cellIndexCalculator), m_smallContributionsThreshold(smallContribThreshold) { m_connectionFlowPrBranch.resize(m_pipeBranchesCellIds.size()); m_pseudoLengthFlowPrBranch.resize(m_pipeBranchesCellIds.size()); m_tvdFlowPrBranch.resize(m_pipeBranchesCellIds.size()); if (isWellFlowConsistent(isProducer)) { for ( const auto& it: (*m_tracerCellFractionValues) ) m_tracerNames.push_back(it.first); m_tracerNames.push_back(RIG_RESERVOIR_TRACER_NAME); calculateAccumulatedFlowPrConnection(0, 1); calculateFlowPrPseudoLength(0, 0.0); sortTracers(); groupSmallContributions(); } else { m_tracerCellFractionValues = nullptr; m_cellIndexCalculator = RigEclCellIndexCalculator(nullptr, nullptr); m_tracerNames.push_back(RIG_FLOW_TOTAL_NAME); calculateAccumulatedFlowPrConnection(0, 1); calculateFlowPrPseudoLength(0, 0.0); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigAccWellFlowCalculator::RigAccWellFlowCalculator(const std::vector< std::vector >& pipeBranchesCLCoords, const std::vector< std::vector >& pipeBranchesCellIds, double smallContribThreshold) : m_pipeBranchesCLCoords(pipeBranchesCLCoords), m_pipeBranchesCellIds(pipeBranchesCellIds), m_tracerCellFractionValues(nullptr), m_cellIndexCalculator(RigEclCellIndexCalculator(nullptr, nullptr)), m_smallContributionsThreshold(smallContribThreshold) { m_connectionFlowPrBranch.resize(m_pipeBranchesCellIds.size()); m_pseudoLengthFlowPrBranch.resize(m_pipeBranchesCellIds.size()); m_tvdFlowPrBranch.resize(m_pipeBranchesCellIds.size()); m_tracerNames.push_back(RIG_FLOW_TOTAL_NAME); calculateAccumulatedFlowPrConnection(0, 1); calculateFlowPrPseudoLength(0, 0.0); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::vector& RigAccWellFlowCalculator::connectionNumbersFromTop(size_t branchIdx) const { return m_connectionFlowPrBranch[branchIdx].depthValuesFromTop; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::vector& RigAccWellFlowCalculator::accumulatedFlowPrConnection(size_t branchIdx) const { return accumulatedTracerFlowPrConnection(RIG_FLOW_TOTAL_NAME, branchIdx); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::vector& RigAccWellFlowCalculator::accumulatedTracerFlowPrConnection(const QString& tracerName, size_t branchIdx) const { auto flowPrTracerIt = m_connectionFlowPrBranch[branchIdx].accFlowPrTracer.find(tracerName); if ( flowPrTracerIt != m_connectionFlowPrBranch[branchIdx].accFlowPrTracer.end()) { return flowPrTracerIt->second; } else { CVF_ASSERT(false); static std::vector dummy; return dummy; } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::vector& RigAccWellFlowCalculator::flowPrConnection(size_t branchIdx) const { return tracerFlowPrConnection(RIG_FLOW_TOTAL_NAME, branchIdx); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::vector& RigAccWellFlowCalculator::tracerFlowPrConnection(const QString& tracerName, size_t branchIdx) const { auto flowPrTracerIt = m_connectionFlowPrBranch[branchIdx].flowPrTracer.find(tracerName); if ( flowPrTracerIt != m_connectionFlowPrBranch[branchIdx].flowPrTracer.end()) { return flowPrTracerIt->second; } else { CVF_ASSERT(false); static std::vector dummy; return dummy; } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::vector& RigAccWellFlowCalculator::pseudoLengthFromTop(size_t branchIdx) const { return m_pseudoLengthFlowPrBranch[branchIdx].depthValuesFromTop; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::vector& RigAccWellFlowCalculator::accumulatedFlowPrPseudoLength(size_t branchIdx) const { return accumulatedTracerFlowPrPseudoLength(RIG_FLOW_TOTAL_NAME, branchIdx); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::vector& RigAccWellFlowCalculator::accumulatedTracerFlowPrPseudoLength(const QString& tracerName, size_t branchIdx) const { auto flowPrTracerIt = m_pseudoLengthFlowPrBranch[branchIdx].accFlowPrTracer.find(tracerName); if ( flowPrTracerIt != m_pseudoLengthFlowPrBranch[branchIdx].accFlowPrTracer.end()) { return flowPrTracerIt->second; } else { CVF_ASSERT(false); static std::vector dummy; return dummy; } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::vector& RigAccWellFlowCalculator::flowPrPseudoLength(size_t branchIdx) const { return tracerFlowPrPseudoLength(RIG_FLOW_TOTAL_NAME, branchIdx); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::vector& RigAccWellFlowCalculator::tracerFlowPrPseudoLength(const QString& tracerName, size_t branchIdx) const { auto flowPrTracerIt = m_pseudoLengthFlowPrBranch[branchIdx].flowPrTracer.find(tracerName); if ( flowPrTracerIt != m_pseudoLengthFlowPrBranch[branchIdx].flowPrTracer.end()) { return flowPrTracerIt->second; } else { CVF_ASSERT(false); static std::vector dummy; return dummy; } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector > RigAccWellFlowCalculator::totalWellFlowPrTracer() const { std::vector tracerNames = this->tracerNames(); std::vector > tracerWithValues; for (const QString& tracerName: tracerNames) { const std::vector& accFlow = this->accumulatedTracerFlowPrConnection(tracerName, 0); tracerWithValues.push_back(std::make_pair(tracerName, accFlow.back())); } return tracerWithValues; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector > RigAccWellFlowCalculator::totalTracerFractions() const { std::vector > totalFlows = totalWellFlowPrTracer(); float sumTracerFlows = 0.0f; for ( const auto& tracerVal : totalFlows) { sumTracerFlows += tracerVal.second; } if (sumTracerFlows == 0.0) totalFlows.clear(); for (auto& tracerPair : totalFlows) { tracerPair.second = tracerPair.second/sumTracerFlows; } return totalFlows; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RigAccWellFlowCalculator::isWellFlowConsistent( bool isProducer) const { bool isConsistent = true; for (const std::vector & branch : m_pipeBranchesCellIds) { for (const RigWellResultPoint& wrp : branch) { if (isProducer) isConsistent = (wrp.flowRate() >= 0.0) ; else isConsistent = (wrp.flowRate() <= 0.0) ; if (!isConsistent) break; } if (!isConsistent) break; } return isConsistent; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigAccWellFlowCalculator::calculateAccumulatedFlowPrConnection(size_t branchIdx, size_t startConnectionNumberFromTop) { const std::vector& branchCells = m_pipeBranchesCellIds[branchIdx]; std::vector resPointToConnectionIndexFromBottom = wrpToConnectionIndexFromBottom(branchCells); size_t prevConnIndx = -1; int clSegIdx = static_cast(branchCells.size()) - 1; std::vector accFlowPrTracer(m_tracerNames.size(), 0.0); while ( clSegIdx >= 0 ) { // Skip point if referring to the same cell as the previous centerline segment did { if ( resPointToConnectionIndexFromBottom[clSegIdx] == prevConnIndx ) { --clSegIdx; continue; } prevConnIndx = resPointToConnectionIndexFromBottom[clSegIdx]; } // Accumulate the connection-cell's fraction flows std::vector flowPrTracer = calculateFlowPrTracer(branchCells, clSegIdx); for (size_t tIdx = 0; tIdx < flowPrTracer.size(); ++tIdx) { accFlowPrTracer[tIdx] += flowPrTracer[tIdx]; } // Add the total accumulated (fraction) flows from any branches connected to this cell size_t connNumFromTop = connectionIndexFromTop(resPointToConnectionIndexFromBottom, clSegIdx) + startConnectionNumberFromTop; std::vector downStreamBranchIndices = findDownStreamBranchIdxs(branchCells[clSegIdx]); for ( size_t dsBidx : downStreamBranchIndices ) { BranchFlow &downStreamBranchFlow = m_connectionFlowPrBranch[dsBidx]; if ( dsBidx != branchIdx && downStreamBranchFlow.depthValuesFromTop.size() == 0 ) // Not this branch or already calculated { calculateAccumulatedFlowPrConnection(dsBidx, connNumFromTop); addDownStreamBranchFlow(accFlowPrTracer, downStreamBranchFlow); } } // Push back the accumulated result into the storage BranchFlow& branchFlow = m_connectionFlowPrBranch[branchIdx]; storeFlowOnDepth(branchFlow, connNumFromTop, accFlowPrTracer, flowPrTracer); --clSegIdx; } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigAccWellFlowCalculator::calculateFlowPrPseudoLength(size_t branchIdx, double startPseudoLengthFromTop) { const std::vector& branchCells = m_pipeBranchesCellIds[branchIdx]; const std::vector & branchClPoints = m_pipeBranchesCLCoords[branchIdx]; RigSimulationWellCoordsAndMD mdCalculator(branchClPoints); size_t prevConnIndx = -1; int clSegIdx = static_cast(branchCells.size()) - 1; std::vector accFlowPrTracer(m_tracerNames.size(), 0.0); BranchFlow& branchFlow = m_pseudoLengthFlowPrBranch[branchIdx]; RigWellResultPoint previousResultPoint; while ( clSegIdx >= 0 ) { int cellBottomPointIndex = -1; int cellUpperPointIndex = -1; int currentSegmentIndex = -1; // Find the complete cell span { cellBottomPointIndex = clSegIdx + 1; previousResultPoint = branchCells[clSegIdx]; --clSegIdx; while ( clSegIdx >= 0 && previousResultPoint.isEqual(branchCells[clSegIdx]) ) { --clSegIdx; } cellUpperPointIndex = clSegIdx + 1; currentSegmentIndex = cellUpperPointIndex; } std::vector flowPrTracer = calculateFlowPrTracer(branchCells, currentSegmentIndex); double pseudoLengthFromTop_lower = mdCalculator.measuredDepths()[cellBottomPointIndex] + startPseudoLengthFromTop; // Push back the new start-of-cell flow, with the previously accumulated result into the storage storeFlowOnDepth(branchFlow, pseudoLengthFromTop_lower, accFlowPrTracer, flowPrTracer); // Accumulate the connection-cell's fraction flows for (size_t tIdx = 0; tIdx < flowPrTracer.size(); ++tIdx) { accFlowPrTracer[tIdx] += flowPrTracer[tIdx]; } double pseudoLengthFromTop_upper = mdCalculator.measuredDepths()[cellUpperPointIndex] + startPseudoLengthFromTop; // Push back the accumulated result into the storage storeFlowOnDepth(branchFlow, pseudoLengthFromTop_upper, accFlowPrTracer, flowPrTracer); // Add the total accumulated (fraction) flows from any branches connected to this cell std::vector downStreamBranchIndices = findDownStreamBranchIdxs(branchCells[cellUpperPointIndex]); for ( size_t dsBidx : downStreamBranchIndices ) { BranchFlow &downStreamBranchFlow = m_pseudoLengthFlowPrBranch[dsBidx]; if ( dsBidx != branchIdx && downStreamBranchFlow.depthValuesFromTop.size() == 0 ) // Not this branch or already calculated { calculateFlowPrPseudoLength(dsBidx, pseudoLengthFromTop_upper); addDownStreamBranchFlow(accFlowPrTracer, downStreamBranchFlow); } } // Push back the accumulated result after adding the branch result into the storage if (downStreamBranchIndices.size()) storeFlowOnDepth(branchFlow, pseudoLengthFromTop_upper, accFlowPrTracer, flowPrTracer); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigAccWellFlowCalculator::addDownStreamBranchFlow(std::vector &accFlowPrTracer, const BranchFlow &downStreamBranchFlow) const { size_t tracerIdx = 0; for ( const auto & tracerName: m_tracerNames ) { auto tracerFlowPair = downStreamBranchFlow.accFlowPrTracer.find(tracerName); if ( tracerFlowPair != downStreamBranchFlow.accFlowPrTracer.end() ) { accFlowPrTracer[tracerIdx] += tracerFlowPair->second.back(); // The topmost accumulated value in the branch } tracerIdx++; } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigAccWellFlowCalculator::storeFlowOnDepth(BranchFlow &branchFlow, double depthValue, const std::vector& accFlowPrTracer, const std::vector& flowPrTracer) { size_t tracerIdx = 0; for ( const auto & tracerName: m_tracerNames ) { branchFlow.accFlowPrTracer[tracerName].push_back(accFlowPrTracer[tracerIdx]); branchFlow.flowPrTracer[tracerName].push_back(flowPrTracer[tracerIdx]); tracerIdx++; } branchFlow.depthValuesFromTop.push_back(depthValue); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RigAccWellFlowCalculator::calculateFlowPrTracer(const std::vector& branchCells, int clSegIdx) const { std::vector flowPrTracer(m_tracerNames.size(), 0.0); if ( m_tracerCellFractionValues ) { if ( branchCells[clSegIdx].isCell() && branchCells[clSegIdx].m_isOpen ) { size_t resCellIndex = m_cellIndexCalculator.resultCellIndex(branchCells[clSegIdx].m_gridIndex, branchCells[clSegIdx].m_gridCellIndex); size_t tracerIdx = 0; double totalTracerFractionInCell = 0.0; for ( const auto & tracerFractionIt: (*m_tracerCellFractionValues) ) { double cellTracerFraction = (*tracerFractionIt.second)[resCellIndex]; if ( cellTracerFraction != HUGE_VAL && cellTracerFraction == cellTracerFraction ) { double tracerFlow = cellTracerFraction * branchCells[clSegIdx].flowRate(); flowPrTracer[tracerIdx] = tracerFlow; totalTracerFractionInCell += cellTracerFraction; } tracerIdx++; } double reservoirFraction = 1.0 - totalTracerFractionInCell; double reservoirTracerFlow = reservoirFraction * branchCells[clSegIdx].flowRate(); flowPrTracer[tracerIdx] = reservoirTracerFlow; } } else { flowPrTracer[0] = branchCells[clSegIdx].flowRate(); } return flowPrTracer; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RigAccWellFlowCalculator::wrpToConnectionIndexFromBottom(const std::vector &branchCells) const { std::vector resPointToConnectionIndexFromBottom; resPointToConnectionIndexFromBottom.resize(branchCells.size(), -1); size_t connIdxFromBottom = 0; int clSegIdx = static_cast(branchCells.size()) - 1; if (clSegIdx < 0) return resPointToConnectionIndexFromBottom; size_t prevGridIdx = branchCells[clSegIdx].m_gridIndex; size_t prevGridCellIdx = branchCells[clSegIdx].m_gridCellIndex; int prevErtSegId = branchCells[clSegIdx].m_ertSegmentId; int prevErtBranchId = branchCells[clSegIdx].m_ertBranchId; while ( clSegIdx >= 0 ) { if ( branchCells[clSegIdx].isValid() && ( branchCells[clSegIdx].m_gridIndex != prevGridIdx || branchCells[clSegIdx].m_gridCellIndex != prevGridCellIdx || branchCells[clSegIdx].m_ertSegmentId != prevErtSegId || branchCells[clSegIdx].m_ertBranchId != prevErtBranchId) ) { ++connIdxFromBottom; prevGridIdx = branchCells[clSegIdx].m_gridIndex ; prevGridCellIdx = branchCells[clSegIdx].m_gridCellIndex; prevErtSegId = branchCells[clSegIdx].m_ertSegmentId; prevErtBranchId = branchCells[clSegIdx].m_ertBranchId; } resPointToConnectionIndexFromBottom[clSegIdx] = connIdxFromBottom; --clSegIdx; } return resPointToConnectionIndexFromBottom; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- size_t RigAccWellFlowCalculator::connectionIndexFromTop(const std::vector& resPointToConnectionIndexFromBottom, size_t clSegIdx) { return resPointToConnectionIndexFromBottom.front() - resPointToConnectionIndexFromBottom[clSegIdx]; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RigAccWellFlowCalculator::findDownStreamBranchIdxs(const RigWellResultPoint& connectionPoint) const { std::vector downStreamBranchIdxs; for ( size_t bIdx = 0; bIdx < m_pipeBranchesCellIds.size(); ++bIdx ) { if ( m_pipeBranchesCellIds[bIdx][0].m_gridIndex == connectionPoint.m_gridIndex && m_pipeBranchesCellIds[bIdx][0].m_gridCellIndex == connectionPoint.m_gridCellIndex && m_pipeBranchesCellIds[bIdx][0].m_ertBranchId == connectionPoint.m_ertBranchId && m_pipeBranchesCellIds[bIdx][0].m_ertSegmentId == connectionPoint.m_ertSegmentId) { downStreamBranchIdxs.push_back(bIdx); } } return downStreamBranchIdxs; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigAccWellFlowCalculator::sortTracers() { std::multimap sortedTracers; for (const QString& tracerName: m_tracerNames) { const std::vector& mainBranchAccFlow = accumulatedTracerFlowPrConnection(tracerName, 0); double totalFlow = 0.0; if (mainBranchAccFlow.size()) totalFlow = - abs( mainBranchAccFlow.back() ); // Based on size in reverse order (biggest to least) sortedTracers.insert({totalFlow, tracerName}); } m_tracerNames.clear(); for (const auto& tracerPair : sortedTracers) { m_tracerNames.push_back(tracerPair.second); } } //-------------------------------------------------------------------------------------------------- /// Concatenate small tracers into an "Other" group //-------------------------------------------------------------------------------------------------- void RigAccWellFlowCalculator::groupSmallContributions() { if ( ! (m_smallContributionsThreshold > 0.0) ) return; // Find the tracers we need to group std::vector tracersToGroup; { std::vector > totalTracerFractions = this->totalTracerFractions(); if ( totalTracerFractions.size() < 5 ) return; // No grouping for few legend items for ( const auto& tracerPair : totalTracerFractions ) { if ( abs(tracerPair.second) <= m_smallContributionsThreshold ) tracersToGroup.push_back(tracerPair.first); } } if ( tracersToGroup.size() < 2 ) return; // Must at least group two ... // Concatenate the values for each branch, erasing the tracers being grouped, replaced with the concatenated values for ( BranchFlow& brRes : m_connectionFlowPrBranch ) { groupSmallTracers( brRes.accFlowPrTracer, tracersToGroup); groupSmallTracers( brRes.flowPrTracer, tracersToGroup); } // Remove the grouped tracer names from the tracerName list, and replace with the "Others" name std::vector filteredTracernames; for ( const QString& tracerName: m_tracerNames ) { bool isDeleted = false; for ( const QString& deletedTracerName: tracersToGroup ) { if ( tracerName == deletedTracerName ) { isDeleted = true; break; } } if ( !isDeleted ) filteredTracernames.push_back(tracerName); } m_tracerNames.swap(filteredTracernames); m_tracerNames.push_back(RIG_TINY_TRACER_GROUP_NAME); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigAccWellFlowCalculator::groupSmallTracers(std::map> &branchFlowSet, std::vector tracersToGroup) { if ( branchFlowSet.empty() ) return; size_t depthCount = branchFlowSet.begin()->second.size(); std::vector groupedAccFlowValues(depthCount, 0.0); for ( const QString& tracername:tracersToGroup ) { auto it = branchFlowSet.find(tracername); if ( it != branchFlowSet.end() ) { const std::vector& tracerVals = it->second; for ( size_t cIdx = 0; cIdx < groupedAccFlowValues.size(); ++cIdx ) { groupedAccFlowValues[cIdx] += tracerVals[cIdx]; } } branchFlowSet.erase(it); } branchFlowSet[RIG_TINY_TRACER_GROUP_NAME] = groupedAccFlowValues; }