//################################################################################################## // // Custom Visualization Core library // Copyright (C) 2011-2013 Ceetron AS // // This library may be used under the terms of either the GNU General Public License or // the GNU Lesser General Public License as follows: // // GNU General Public License Usage // This library is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This library is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at <> // for more details. // // GNU Lesser General Public License Usage // This library is free software; you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation; either version 2.1 of the License, or // (at your option) any later version. // // This library is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU Lesser General Public License at <> // for more details. // //################################################################################################## #include "cvfBase.h" #include "cvfStructGridIsosurface.h" #include "cvfGeometryBuilderDrawableGeo.h" #include "cvfPrimitiveSetIndexedUShort.h" #include "cvfDebugTimer.h" #include "cvfPlane.h" #include "cvfScalarMapper.h" #include "cvfRectilinearGrid.h" #include namespace cvf { //================================================================================================== /// /// \class cvf::StructGridIsosurface /// \ingroup StructGrid /// /// /// //================================================================================================== // Based on description and implementation from Paul Bourke: // http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/ const uint StructGridIsosurface::sm_edgeTable[256] = { 0x0 , 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c, 0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00, 0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c, 0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90, 0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c, 0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30, 0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac, 0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0, 0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c, 0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60, 0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc, 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0, 0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c, 0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950, 0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc , 0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0, 0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc, 0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0, 0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c, 0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650, 0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc, 0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0, 0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c, 0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460, 0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac, 0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0, 0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c, 0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230, 0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c, 0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190, 0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c, 0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0 }; const int StructGridIsosurface::sm_triTable[256][16] = { {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1}, {3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1}, {3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1}, {3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1}, {9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1}, {9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1}, {2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1}, {8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1}, {9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1}, {4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1}, {3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1}, {1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1}, {4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1}, {4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1}, {5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1}, {2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1}, {9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1}, {0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1}, {2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1}, {10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1}, {5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1}, {5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1}, {9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1}, {0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1}, {1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1}, {10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1}, {8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1}, {2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1}, {7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1}, {2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1}, {11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1}, {5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1}, {11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1}, {11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1}, {1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1}, {9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1}, {5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1}, {2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1}, {5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1}, {6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1}, {3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1}, {6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1}, {5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1}, {1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1}, {10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1}, {6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1}, {8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1}, {7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1}, {3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1}, {5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1}, {0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1}, {9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1}, {8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1}, {5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1}, {0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1}, {6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1}, {10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1}, {10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1}, {8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1}, {1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1}, {0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1}, {10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1}, {3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1}, {6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1}, {9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1}, {8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1}, {3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1}, {6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1}, {0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1}, {10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1}, {10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1}, {2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1}, {7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1}, {7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1}, {2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1}, {1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1}, {11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1}, {8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1}, {0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1}, {7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1}, {10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1}, {2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1}, {6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1}, {7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1}, {2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1}, {1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1}, {10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1}, {10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1}, {0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1}, {7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1}, {6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1}, {8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1}, {9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1}, {6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1}, {4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1}, {10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1}, {8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1}, {0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1}, {1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1}, {8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1}, {10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1}, {4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1}, {10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1}, {5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1}, {11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1}, {9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1}, {6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1}, {7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1}, {3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1}, {7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1}, {3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1}, {6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1}, {9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1}, {1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1}, {4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1}, {7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1}, {6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1}, {3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1}, {0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1}, {6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1}, {0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1}, {11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1}, {6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1}, {5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1}, {9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1}, {1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1}, {1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1}, {10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1}, {0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1}, {5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1}, {10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1}, {11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1}, {9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1}, {7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1}, {2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1}, {8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1}, {9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1}, {9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1}, {1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1}, {9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1}, {9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1}, {5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1}, {0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1}, {10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1}, {2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1}, {0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1}, {0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1}, {9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1}, {5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1}, {3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1}, {5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1}, {8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1}, {0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1}, {9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1}, {1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1}, {3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1}, {4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1}, {9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1}, {11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1}, {11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1}, {2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1}, {9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1}, {3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1}, {1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1}, {4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1}, {3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1}, {0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1}, {9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1}, {1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1} }; //-------------------------------------------------------------------------------------------------- /// Constructor //-------------------------------------------------------------------------------------------------- StructGridIsosurface::StructGridIsosurface(const RectilinearGrid* grid) : m_grid(grid), m_scalarSetIndex(0), m_isoValue(0), m_mapScalarSetIndex(UNDEFINED_UINT), m_scalarMapper(NULL) { CVF_ASSERT(grid); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- StructGridIsosurface::~StructGridIsosurface() { } //-------------------------------------------------------------------------------------------------- /// Set index of scalar set that should be used to generate the isosurface /// /// \param scalarSetIndex Index of the scalar set. Must be a valid index. The default index is 0. //-------------------------------------------------------------------------------------------------- void StructGridIsosurface::setScalarSetIndex(uint scalarSetIndex) { CVF_ASSERT(m_grid.notNull()); CVF_ASSERT(scalarSetIndex < m_grid->scalarSetCount()); m_scalarSetIndex = scalarSetIndex; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void StructGridIsosurface::setIsoValue(double value) { m_isoValue = value; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void StructGridIsosurface::setMapScalar(uint scalarSetIndex, const ScalarMapper* mapper) { CVF_ASSERT(scalarSetIndex < m_grid->scalarSetCount()); CVF_ASSERT(mapper); m_mapScalarSetIndex = scalarSetIndex; m_scalarMapper = mapper; } //-------------------------------------------------------------------------------------------------- /// Generate isosurface geometry based on grid point scalars (cell corner) /// /// \return Reference to created DrawableGeo object. Returns NULL if no isosurface was generated. /// If a scalar mapper is defined, texture coords are generated based on scalar field used /// to map onto the isosurface /// //-------------------------------------------------------------------------------------------------- ref StructGridIsosurface::generateSurface() const { DebugTimer tim("StructGridIsosurface::generateSurface()", DebugTimer::DISABLED); uint cellCountI = m_grid->cellCountI(); uint cellCountJ = m_grid->cellCountJ(); uint cellCountK = m_grid->cellCountK(); std::vector isoVertices; std::vector isoVertexScalars; std::vector isoIndices; bool useTextureMapping = mapScalar(); // Maps from edge IDs in original grid to vertex indices in the generated isosurface std::map edgeIdToIsoVertexIdxMap; // The indexing conventions for vertices and // edges used in the algorithm: // edg verts // 4-------------5 *------4------* 0 0 - 1 // /| /| /| /| 1 1 - 2 // / | / | 7/ | 5/ | 2 2 - 3 // / | / | |z / 8 / 9 3 3 - 0 // 7-------------6 | | /y *------6------* | 4 4 - 5 // | | | | |/ | | | | 5 5 - 6 // | 0---------|---1 *---x | *------0--|---* 6 6 - 7 // | / | / 11 / 10 / 7 7 - 4 // | / | / | /3 | /1 8 0 - 4 // |/ |/ |/ |/ 9 1 - 5 // 3-------------2 *------2------* 10 2 - 6 // vertex indices edge indices 11 3 - 7 // GridCell cell; uint k; for (k = 0; k < cellCountK; k++) { uint j; for (j = 0; j < cellCountJ; j++) { uint i; for (i = 0; i < cellCountI; i++) { // Corner scalar values cell.val[0] = m_grid->gridPointScalar(m_scalarSetIndex, i, j + 1, k); cell.val[1] = m_grid->gridPointScalar(m_scalarSetIndex, i + 1, j + 1, k); cell.val[2] = m_grid->gridPointScalar(m_scalarSetIndex, i + 1, j, k); cell.val[3] = m_grid->gridPointScalar(m_scalarSetIndex, i, j, k); cell.val[4] = m_grid->gridPointScalar(m_scalarSetIndex, i, j + 1, k + 1); cell.val[5] = m_grid->gridPointScalar(m_scalarSetIndex, i + 1, j + 1, k + 1); cell.val[6] = m_grid->gridPointScalar(m_scalarSetIndex, i + 1, j, k + 1); cell.val[7] = m_grid->gridPointScalar(m_scalarSetIndex, i, j, k + 1); // Inexpensive optimization // Check if iso value intersects this cell before proceeding int aboveCount = 0; int belowCount = 0; int n; for (n = 0; n < 8; n++) { if (cell.val[n] < m_isoValue) belowCount++; else if (cell.val[n] > m_isoValue) aboveCount++; } if (aboveCount == 8 || belowCount == 8) { continue; } if (useTextureMapping) { cell.mapVal[0] = m_grid->gridPointScalar(m_mapScalarSetIndex, i, j + 1, k); cell.mapVal[1] = m_grid->gridPointScalar(m_mapScalarSetIndex, i + 1, j + 1, k); cell.mapVal[2] = m_grid->gridPointScalar(m_mapScalarSetIndex, i + 1, j, k); cell.mapVal[3] = m_grid->gridPointScalar(m_mapScalarSetIndex, i, j, k); cell.mapVal[4] = m_grid->gridPointScalar(m_mapScalarSetIndex, i, j + 1, k + 1); cell.mapVal[5] = m_grid->gridPointScalar(m_mapScalarSetIndex, i + 1, j + 1, k + 1); cell.mapVal[6] = m_grid->gridPointScalar(m_mapScalarSetIndex, i + 1, j, k + 1); cell.mapVal[7] = m_grid->gridPointScalar(m_mapScalarSetIndex, i, j, k + 1); } // Corner coordinates cell.p[0] = m_grid->gridPointCoordinate(i, j + 1, k); cell.p[1] = m_grid->gridPointCoordinate(i + 1, j + 1, k); cell.p[2] = m_grid->gridPointCoordinate(i + 1, j, k); cell.p[3] = m_grid->gridPointCoordinate(i, j, k); cell.p[4] = m_grid->gridPointCoordinate(i, j + 1, k + 1); cell.p[5] = m_grid->gridPointCoordinate(i + 1, j + 1, k + 1); cell.p[6] = m_grid->gridPointCoordinate(i + 1, j, k + 1); cell.p[7] = m_grid->gridPointCoordinate(i, j, k + 1); // Edged IDs cell.eid[ 0] = 3*m_grid->gridPointIndexFromIJK(i, j + 1, k); cell.eid[ 1] = 3*m_grid->gridPointIndexFromIJK(i + 1, j, k) + 1; cell.eid[ 2] = 3*m_grid->gridPointIndexFromIJK(i, j, k); cell.eid[ 3] = 3*m_grid->gridPointIndexFromIJK(i, j, k) + 1; cell.eid[ 4] = 3*m_grid->gridPointIndexFromIJK(i, j + 1, k + 1); cell.eid[ 5] = 3*m_grid->gridPointIndexFromIJK(i + 1, j, k + 1) + 1; cell.eid[ 6] = 3*m_grid->gridPointIndexFromIJK(i, j, k + 1); cell.eid[ 7] = 3*m_grid->gridPointIndexFromIJK(i, j, k + 1) + 1; cell.eid[ 8] = 3*m_grid->gridPointIndexFromIJK(i, j + 1, k) + 2; cell.eid[ 9] = 3*m_grid->gridPointIndexFromIJK(i + 1, j + 1, k) + 2; cell.eid[10] = 3*m_grid->gridPointIndexFromIJK(i + 1, j, k) + 2; cell.eid[11] = 3*m_grid->gridPointIndexFromIJK(i, j, k) + 2; Triangle triangles[5]; int numTriangles = polygonise(m_isoValue, cell, triangles, useTextureMapping); for (n = 0; n < numTriangles; n++) { int m; for (m = 0; m < 3; m++) { size_t vertexIdx = 0; size_t sourceEdgeId = triangles[n].peid[m]; std::map::iterator it = edgeIdToIsoVertexIdxMap.find(sourceEdgeId); if (it == edgeIdToIsoVertexIdxMap.end()) { Vec3f v(triangles[n].p[m]); isoVertices.push_back(v); if (useTextureMapping) { isoVertexScalars.push_back(triangles[n].scalars[m]); } vertexIdx = isoVertices.size() - 1; edgeIdToIsoVertexIdxMap[sourceEdgeId] = vertexIdx; } else { vertexIdx = it->second; } isoIndices.push_back(static_cast(vertexIdx)); } } } } } tim.reportTime("Time generating iso"); //Trace::show("Vertices:%d Conns:%d Tris:%d", isoVertices.size(), isoIndices.size(), isoIndices.size()/3); if (isoVertices.size() > 0 && isoIndices.size() > 0) { GeometryBuilderDrawableGeo builder; builder.addVertices(Vec3fArray(isoVertices)); builder.addTriangles(UIntArray(isoIndices)); ref geo = builder.drawableGeo(); if (useTextureMapping) { ref vertexColors = new Color3ubArray; ref textureCoords = new Vec2fArray; vertexColors->reserve(isoVertices.size()); textureCoords->reserve(isoVertices.size()); size_t i; for (i = 0; i < isoVertices.size(); i++) { Color3ub clr = m_scalarMapper->mapToColor(isoVertexScalars[i]); vertexColors->add(clr); Vec2f texCoord = m_scalarMapper->mapToTextureCoord(isoVertexScalars[i]); textureCoords->add(texCoord); } geo->setColorArray(vertexColors.p()); geo->setTextureCoordArray(textureCoords.p()); } return geo; } else { return NULL; } } //-------------------------------------------------------------------------------------------------- /// Generate isosurface geometry from current configuration /// /// \return Reference to created DrawableGeo object. Returns NULL if no isosurface was generated /// /// \remarks Currently, the isosurface is generated only from cell center scalar values. /// \todo Must implement special handling of the outer edges of the grid. Currently half of the /// outer edge cells is ignored in the isosurface computation. //-------------------------------------------------------------------------------------------------- ref StructGridIsosurface::generateSurfaceCellCenterBased() const { //DebugTimer tim; uint cellCountI = m_grid->cellCountI(); uint cellCountJ = m_grid->cellCountJ(); uint cellCountK = m_grid->cellCountK(); std::vector isoVertices; std::vector isoIndices; // Maps from edge IDs in original grid to vertex indices in the generated isosurface std::map edgeIdToIsoVertexIdxMap; // The indexing conventions for vertices and // edges used in the algorithm: // edg verts // 4-------------5 *------4------* 0 0 - 1 // /| /| /| /| 1 1 - 2 // / | / | 7/ | 5/ | 2 2 - 3 // / | / | |z / 8 / 9 3 3 - 0 // 7-------------6 | | /y *------6------* | 4 4 - 5 // | | | | |/ | | | | 5 5 - 6 // | 0---------|---1 *---x | *------0--|---* 6 6 - 7 // | / | / 11 / 10 / 7 7 - 4 // | / | / | /3 | /1 8 0 - 4 // |/ |/ |/ |/ 9 1 - 5 // 3-------------2 *------2------* 10 2 - 6 // vertex indices edge indices 11 3 - 7 // GridCell cell; const DoubleArray* scalarSet = m_grid->scalarSet(m_scalarSetIndex); CVF_ASSERT(scalarSet); uint k; for (k = 0; k < cellCountK - 1; k++) { uint j; for (j = 0; j < cellCountJ - 1; j++) { uint i; for (i = 0; i < cellCountI - 1; i++) { size_t cellIndex0 = m_grid->cellIndexFromIJK(i, j + 1, k); size_t cellIndex1 = m_grid->cellIndexFromIJK(i + 1, j + 1, k); size_t cellIndex2 = m_grid->cellIndexFromIJK(i + 1, j, k); size_t cellIndex3 = m_grid->cellIndexFromIJK(i, j, k); size_t cellIndex4 = m_grid->cellIndexFromIJK(i, j + 1, k + 1); size_t cellIndex5 = m_grid->cellIndexFromIJK(i + 1, j + 1, k + 1); size_t cellIndex6 = m_grid->cellIndexFromIJK(i + 1, j, k + 1); size_t cellIndex7 = m_grid->cellIndexFromIJK(i, j, k + 1); // Corner scalar values cell.val[0] = scalarSet->get(cellIndex0); cell.val[1] = scalarSet->get(cellIndex1); cell.val[2] = scalarSet->get(cellIndex2); cell.val[3] = scalarSet->get(cellIndex3); cell.val[4] = scalarSet->get(cellIndex4); cell.val[5] = scalarSet->get(cellIndex5); cell.val[6] = scalarSet->get(cellIndex6); cell.val[7] = scalarSet->get(cellIndex7); // Inexpensive optimization // Check if iso value intersects this cell before proceeding int aboveCount = 0; int belowCount = 0; int n; for (n = 0; n < 8; n++) { if (cell.val[n] < m_isoValue) belowCount++; else if (cell.val[n] > m_isoValue) aboveCount++; } if (aboveCount == 8 || belowCount == 8) { continue; } // Corner coordinates cell.p[0] = m_grid->cellCentroid(cellIndex0); cell.p[1] = m_grid->cellCentroid(cellIndex1); cell.p[2] = m_grid->cellCentroid(cellIndex2); cell.p[3] = m_grid->cellCentroid(cellIndex3); cell.p[4] = m_grid->cellCentroid(cellIndex4); cell.p[5] = m_grid->cellCentroid(cellIndex5); cell.p[6] = m_grid->cellCentroid(cellIndex6); cell.p[7] = m_grid->cellCentroid(cellIndex7); // Edged IDs cell.eid[ 0] = 3*m_grid->gridPointIndexFromIJK(i, j + 1, k); cell.eid[ 1] = 3*m_grid->gridPointIndexFromIJK(i + 1, j, k) + 1; cell.eid[ 2] = 3*m_grid->gridPointIndexFromIJK(i, j, k); cell.eid[ 3] = 3*m_grid->gridPointIndexFromIJK(i, j, k) + 1; cell.eid[ 4] = 3*m_grid->gridPointIndexFromIJK(i, j + 1, k + 1); cell.eid[ 5] = 3*m_grid->gridPointIndexFromIJK(i + 1, j, k + 1) + 1; cell.eid[ 6] = 3*m_grid->gridPointIndexFromIJK(i, j, k + 1); cell.eid[ 7] = 3*m_grid->gridPointIndexFromIJK(i, j, k + 1) + 1; cell.eid[ 8] = 3*m_grid->gridPointIndexFromIJK(i, j + 1, k) + 2; cell.eid[ 9] = 3*m_grid->gridPointIndexFromIJK(i + 1, j + 1, k) + 2; cell.eid[10] = 3*m_grid->gridPointIndexFromIJK(i + 1, j, k) + 2; cell.eid[11] = 3*m_grid->gridPointIndexFromIJK(i, j, k) + 2; Triangle triangles[5]; int numTriangles = polygonise(m_isoValue, cell, triangles, false); for (n = 0; n < numTriangles; n++) { int m; for (m = 0; m < 3; m++) { size_t vertexIdx = 0; size_t sourceEdgeId = triangles[n].peid[m]; std::map::iterator it = edgeIdToIsoVertexIdxMap.find(sourceEdgeId); if (it == edgeIdToIsoVertexIdxMap.end()) { Vec3f v(triangles[n].p[m]); isoVertices.push_back(v); vertexIdx = isoVertices.size() - 1; edgeIdToIsoVertexIdxMap[sourceEdgeId] = vertexIdx; } else { vertexIdx = it->second; } isoIndices.push_back(static_cast(vertexIdx)); } } } } } //tim.reportTime("Time generating iso"); //Trace::show("Vertices:%d Conns:%d Tris:%d", isoVertices.size(), isoIndices.size(), isoIndices.size()/3); if (isoVertices.size() > 0 && isoIndices.size() > 0) { GeometryBuilderDrawableGeo builder; builder.addVertices(Vec3fArray(isoVertices)); builder.addTriangles(UIntArray(isoIndices)); return builder.drawableGeo(); } else { return NULL; } } //-------------------------------------------------------------------------------------------------- /// Given a cell and an isolevel, calculate the triangular facets to represent the isosurface through the cell /// /// \return Return the number of triangular facets. 0 will be returned if the grid cell is either /// totally above of totally below the isolevel. /// /// The array "triangles" will be loaded up with the vertices at most 5 triangular facets. //-------------------------------------------------------------------------------------------------- int StructGridIsosurface::polygonise(double isolevel, const GridCell& grid, Triangle triangles[5], bool useTextureMapping) { // Determine the index into the edge table which tells us which vertices are inside of the surface // Calculate from those vertices which are below the isolevel. int cubeindex = 0; if (grid.val[0] < isolevel) cubeindex |= 1; if (grid.val[1] < isolevel) cubeindex |= 2; if (grid.val[2] < isolevel) cubeindex |= 4; if (grid.val[3] < isolevel) cubeindex |= 8; if (grid.val[4] < isolevel) cubeindex |= 16; if (grid.val[5] < isolevel) cubeindex |= 32; if (grid.val[6] < isolevel) cubeindex |= 64; if (grid.val[7] < isolevel) cubeindex |= 128; // Cube is entirely in/out of the surface if (sm_edgeTable[cubeindex] == 0) { return 0; } // Find the vertices where the surface intersects the cube Vec3d vertlist[12]; double mapScalars[12]; if (useTextureMapping) { if (sm_edgeTable[cubeindex] & 1) vertlist[ 0] = vertexInterpolateWithMapping(isolevel, grid.p[0], grid.p[1], grid.val[0], grid.val[1], grid.mapVal[0], grid.mapVal[1], &mapScalars[ 0]); if (sm_edgeTable[cubeindex] & 2) vertlist[ 1] = vertexInterpolateWithMapping(isolevel, grid.p[1], grid.p[2], grid.val[1], grid.val[2], grid.mapVal[1], grid.mapVal[2], &mapScalars[ 1]); if (sm_edgeTable[cubeindex] & 4) vertlist[ 2] = vertexInterpolateWithMapping(isolevel, grid.p[2], grid.p[3], grid.val[2], grid.val[3], grid.mapVal[2], grid.mapVal[3], &mapScalars[ 2]); if (sm_edgeTable[cubeindex] & 8) vertlist[ 3] = vertexInterpolateWithMapping(isolevel, grid.p[3], grid.p[0], grid.val[3], grid.val[0], grid.mapVal[3], grid.mapVal[0], &mapScalars[ 3]); if (sm_edgeTable[cubeindex] & 16) vertlist[ 4] = vertexInterpolateWithMapping(isolevel, grid.p[4], grid.p[5], grid.val[4], grid.val[5], grid.mapVal[4], grid.mapVal[5], &mapScalars[ 4]); if (sm_edgeTable[cubeindex] & 32) vertlist[ 5] = vertexInterpolateWithMapping(isolevel, grid.p[5], grid.p[6], grid.val[5], grid.val[6], grid.mapVal[5], grid.mapVal[6], &mapScalars[ 5]); if (sm_edgeTable[cubeindex] & 64) vertlist[ 6] = vertexInterpolateWithMapping(isolevel, grid.p[6], grid.p[7], grid.val[6], grid.val[7], grid.mapVal[6], grid.mapVal[7], &mapScalars[ 6]); if (sm_edgeTable[cubeindex] & 128) vertlist[ 7] = vertexInterpolateWithMapping(isolevel, grid.p[7], grid.p[4], grid.val[7], grid.val[4], grid.mapVal[7], grid.mapVal[4], &mapScalars[ 7]); if (sm_edgeTable[cubeindex] & 256) vertlist[ 8] = vertexInterpolateWithMapping(isolevel, grid.p[0], grid.p[4], grid.val[0], grid.val[4], grid.mapVal[0], grid.mapVal[4], &mapScalars[ 8]); if (sm_edgeTable[cubeindex] & 512) vertlist[ 9] = vertexInterpolateWithMapping(isolevel, grid.p[1], grid.p[5], grid.val[1], grid.val[5], grid.mapVal[1], grid.mapVal[5], &mapScalars[ 9]); if (sm_edgeTable[cubeindex] & 1024) vertlist[10] = vertexInterpolateWithMapping(isolevel, grid.p[2], grid.p[6], grid.val[2], grid.val[6], grid.mapVal[2], grid.mapVal[6], &mapScalars[10]); if (sm_edgeTable[cubeindex] & 2048) vertlist[11] = vertexInterpolateWithMapping(isolevel, grid.p[3], grid.p[7], grid.val[3], grid.val[7], grid.mapVal[3], grid.mapVal[7], &mapScalars[11]); } else { if (sm_edgeTable[cubeindex] & 1) vertlist[0] = vertexInterpolate(isolevel, grid.p[0], grid.p[1], grid.val[0], grid.val[1]); if (sm_edgeTable[cubeindex] & 2) vertlist[1] = vertexInterpolate(isolevel, grid.p[1], grid.p[2], grid.val[1], grid.val[2]); if (sm_edgeTable[cubeindex] & 4) vertlist[2] = vertexInterpolate(isolevel, grid.p[2], grid.p[3], grid.val[2], grid.val[3]); if (sm_edgeTable[cubeindex] & 8) vertlist[3] = vertexInterpolate(isolevel, grid.p[3], grid.p[0], grid.val[3], grid.val[0]); if (sm_edgeTable[cubeindex] & 16) vertlist[4] = vertexInterpolate(isolevel, grid.p[4], grid.p[5], grid.val[4], grid.val[5]); if (sm_edgeTable[cubeindex] & 32) vertlist[5] = vertexInterpolate(isolevel, grid.p[5], grid.p[6], grid.val[5], grid.val[6]); if (sm_edgeTable[cubeindex] & 64) vertlist[6] = vertexInterpolate(isolevel, grid.p[6], grid.p[7], grid.val[6], grid.val[7]); if (sm_edgeTable[cubeindex] & 128) vertlist[7] = vertexInterpolate(isolevel, grid.p[7], grid.p[4], grid.val[7], grid.val[4]); if (sm_edgeTable[cubeindex] & 256) vertlist[8] = vertexInterpolate(isolevel, grid.p[0], grid.p[4], grid.val[0], grid.val[4]); if (sm_edgeTable[cubeindex] & 512) vertlist[9] = vertexInterpolate(isolevel, grid.p[1], grid.p[5], grid.val[1], grid.val[5]); if (sm_edgeTable[cubeindex] & 1024) vertlist[10] = vertexInterpolate(isolevel, grid.p[2], grid.p[6], grid.val[2], grid.val[6]); if (sm_edgeTable[cubeindex] & 2048) vertlist[11] = vertexInterpolate(isolevel, grid.p[3], grid.p[7], grid.val[3], grid.val[7]); } // Create the triangles int ntriang = 0; int i; for (i = 0; sm_triTable[cubeindex][i] != -1; i += 3) { triangles[ntriang].p[0] = vertlist[sm_triTable[cubeindex][i ]]; triangles[ntriang].p[1] = vertlist[sm_triTable[cubeindex][i+1]]; triangles[ntriang].p[2] = vertlist[sm_triTable[cubeindex][i+2]]; triangles[ntriang].peid[0] = grid.eid[sm_triTable[cubeindex][i ]]; triangles[ntriang].peid[1] = grid.eid[sm_triTable[cubeindex][i+1]]; triangles[ntriang].peid[2] = grid.eid[sm_triTable[cubeindex][i+2]]; if (useTextureMapping) { triangles[ntriang].scalars[0] = mapScalars[sm_triTable[cubeindex][i ]]; triangles[ntriang].scalars[1] = mapScalars[sm_triTable[cubeindex][i+1]]; triangles[ntriang].scalars[2] = mapScalars[sm_triTable[cubeindex][i+2]]; } ntriang++; } return ntriang; } //-------------------------------------------------------------------------------------------------- /// Linearly interpolate the position where an isosurface cuts an edge between two vertices, each with their own scalar value //-------------------------------------------------------------------------------------------------- Vec3d StructGridIsosurface::vertexInterpolate(double isoLevel, const Vec3d& p1, const Vec3d& p2, double valp1, double valp2) { if (valp1 == valp2) { return p1; } else { double t = (isoLevel - valp1)/(valp2 - valp1); CVF_ASSERT(t >= 0.0 && t <= 1.0); if (t > 0.0 && t < 1.0) { Vec3d p; p.x() = p1.x() + t * (p2.x() - p1.x()); p.y() = p1.y() + t * (p2.y() - p1.y()); p.z() = p1.z() + t * (p2.z() - p1.z()); return p; } else { if (t >= 1.0) { return p2; } else { return p1; } } } } //-------------------------------------------------------------------------------------------------- /// Linearly interpolate the position where an isosurface cuts an edge between two vertices, each with their own scalar value. /// Also compute the mapping scalar value computed position //-------------------------------------------------------------------------------------------------- Vec3d StructGridIsosurface::vertexInterpolateWithMapping(double isoLevel, const Vec3d& p1, const Vec3d& p2, const double valp1, const double valp2, const double mapValP1, const double mapValP2, double* mapVal) { if (valp1 == valp2) { *mapVal = mapValP1; return p1; } else { double t = (isoLevel - valp1)/(valp2 - valp1); CVF_ASSERT(t >= 0.0 && t <= 1.0); if (t > 0.0 && t < 1.0) { Vec3d p; p.x() = p1.x() + t * (p2.x() - p1.x()); p.y() = p1.y() + t * (p2.y() - p1.y()); p.z() = p1.z() + t * (p2.z() - p1.z()); *mapVal = mapValP1 + t * (mapValP2 - mapValP1); return p; } else { if (t >= 1.0) { *mapVal = mapValP2; return p2; } else { *mapVal = mapValP1; return p1; } } } } //-------------------------------------------------------------------------------------------------- /// In order to get texture mapping, map scalar set index and scalar mapper object must be defined, /// and the map scalar set index must be different to the scalar index used as basis for the iso surface //-------------------------------------------------------------------------------------------------- bool StructGridIsosurface::mapScalar() const { if (m_mapScalarSetIndex == UNDEFINED_UINT) { return false; } if (m_mapScalarSetIndex == m_scalarSetIndex) { return false; } if (m_scalarMapper.isNull()) { return false; } return true; } } // namespace cvf