///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2017- Statoil ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigTransmissibilityEquations.h" #include #include //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigTransmissibilityEquations::wellBoreTransmissibilityComponent( double cellPerforationVectorComponent, double permeabilityNormalDirection1, double permeabilityNormalDirection2, double cellSizeNormalDirection1, double cellSizeNormalDirection2, double wellRadius, double skinFactor, double cDarcyForRelevantUnit ) { double K = cvf::Math::sqrt( permeabilityNormalDirection1 * permeabilityNormalDirection2 ); const double lowerLimit = 1.0e-9; if ( std::fabs( permeabilityNormalDirection1 * permeabilityNormalDirection2 ) < lowerLimit ) { // Guard further computations to avoid nan values return 0.0; } double nominator = cDarcyForRelevantUnit * 2 * cvf::PI_D * K * cellPerforationVectorComponent; double peaceManRad = peacemanRadius( permeabilityNormalDirection1, permeabilityNormalDirection2, cellSizeNormalDirection1, cellSizeNormalDirection2 ); double denominator = log( peaceManRad / wellRadius ) + skinFactor; double trans = nominator / denominator; return trans; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigTransmissibilityEquations::totalConnectionFactor( double transX, double transY, double transZ ) { return cvf::Math::sqrt( pow( transX, 2.0 ) + pow( transY, 2.0 ) + pow( transZ, 2.0 ) ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigTransmissibilityEquations::totalKh( double cellPermX, double cellPermY, double cellPermZ, const cvf::Vec3d& internalCellLengths, double lateralNtg, double ntg ) { // Compute kh for each local grid cell axis // Use permeability values for the two other axis double khx = sqrt( cellPermY * cellPermZ ) * internalCellLengths.x() * lateralNtg; double khy = sqrt( cellPermX * cellPermZ ) * internalCellLengths.y() * lateralNtg; double khz = sqrt( cellPermX * cellPermY ) * internalCellLengths.z() * ntg; const double totKh = cvf::Math::sqrt( khx * khx + khy * khy + khz * khz ); return totKh; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigTransmissibilityEquations::effectiveK( double cellPermX, double cellPermY, double cellPermZ, const cvf::Vec3d& internalCellLengths, double lateralNtg, double ntg ) { // Compute kh for each local grid cell axis // Use permeability values for the two other axis double lx = internalCellLengths.x() * lateralNtg; double ly = internalCellLengths.y() * lateralNtg; double lz = internalCellLengths.z() * ntg; double khx = sqrt( cellPermY * cellPermZ ) * lx; double khy = sqrt( cellPermX * cellPermZ ) * ly; double khz = sqrt( cellPermX * cellPermY ) * lz; double nominator = khx + khy + khz; double denominator = lx + ly + lz; const double effK = nominator / denominator; return effK; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigTransmissibilityEquations::effectiveH( const cvf::Vec3d& internalCellLengths, double lateralNtg, double ntg ) { double lx = internalCellLengths.x() * lateralNtg; double ly = internalCellLengths.y() * lateralNtg; double lz = internalCellLengths.z() * ntg; double effH = cvf::Math::sqrt( lx * lx + ly * ly + lz * lz ); return effH; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigTransmissibilityEquations::permeability( const double conductivity, const double width ) { double threshold = 1e-7; if ( std::fabs( width ) > threshold ) { double perm = conductivity / width; return perm; } else { return 0.0; } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigTransmissibilityEquations::peacemanRadius( double permeabilityNormalDirection1, double permeabilityNormalDirection2, double cellSizeNormalDirection1, double cellSizeNormalDirection2 ) { double numerator = cvf::Math::sqrt( pow( cellSizeNormalDirection2, 2.0 ) * pow( permeabilityNormalDirection1 / permeabilityNormalDirection2, 0.5 ) + pow( cellSizeNormalDirection1, 2.0 ) * pow( permeabilityNormalDirection2 / permeabilityNormalDirection1, 0.5 ) ); double denominator = pow( ( permeabilityNormalDirection1 / permeabilityNormalDirection2 ), 0.25 ) + pow( ( permeabilityNormalDirection2 / permeabilityNormalDirection1 ), 0.25 ); double r0 = 0.28 * numerator / denominator; return r0; }