///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2011-2012 Statoil ASA, Ceetron AS // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigSimWellData.h" #include #include //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigSimWellData::RigSimWellData() : m_isMultiSegmentWell( false ) { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const RigWellResultFrame& RigSimWellData::wellResultFrame( size_t resultTimeStepIndex ) const { CVF_ASSERT( resultTimeStepIndex < m_resultTimeStepIndexToWellTimeStepIndex.size() ); size_t wellTimeStepIndex = m_resultTimeStepIndexToWellTimeStepIndex[resultTimeStepIndex]; CVF_ASSERT( wellTimeStepIndex < m_wellCellsTimeSteps.size() ); return m_wellCellsTimeSteps[wellTimeStepIndex]; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigSimWellData::computeMappingFromResultTimeIndicesToWellTimeIndices( const std::vector& simulationTimeSteps ) { m_resultTimeStepIndexToWellTimeStepIndex.clear(); if ( m_wellCellsTimeSteps.size() == 0 ) return; m_resultTimeStepIndexToWellTimeStepIndex.resize( simulationTimeSteps.size(), cvf::UNDEFINED_SIZE_T ); if ( false ) { qDebug() << "Well TimeStamps"; for ( size_t i = 0; i < m_wellCellsTimeSteps.size(); i++ ) { qDebug() << m_wellCellsTimeSteps[i].m_timestamp.toString(); } qDebug() << "Result TimeStamps"; for ( size_t i = 0; i < simulationTimeSteps.size(); i++ ) { qDebug() << simulationTimeSteps[i].toString(); } } size_t wellTimeStepIndex = 0; for ( size_t resultTimeStepIndex = 0; resultTimeStepIndex < simulationTimeSteps.size(); resultTimeStepIndex++ ) { while ( wellTimeStepIndex < m_wellCellsTimeSteps.size() && m_wellCellsTimeSteps[wellTimeStepIndex].m_timestamp < simulationTimeSteps[resultTimeStepIndex] ) { wellTimeStepIndex++; } if ( wellTimeStepIndex < m_wellCellsTimeSteps.size() && m_wellCellsTimeSteps[wellTimeStepIndex].m_timestamp == simulationTimeSteps[resultTimeStepIndex] ) { m_resultTimeStepIndexToWellTimeStepIndex[resultTimeStepIndex] = wellTimeStepIndex; } else { m_resultTimeStepIndexToWellTimeStepIndex[resultTimeStepIndex] = cvf::UNDEFINED_SIZE_T; } } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RigSimWellData::hasWellResult( size_t resultTimeStepIndex ) const { if ( resultTimeStepIndex >= m_resultTimeStepIndexToWellTimeStepIndex.size() ) { return false; } size_t wellTimeStepIndex = m_resultTimeStepIndexToWellTimeStepIndex[resultTimeStepIndex]; return wellTimeStepIndex != cvf::UNDEFINED_SIZE_T; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RigSimWellData::hasAnyValidCells( size_t resultTimeStepIndex ) const { if ( resultTimeStepIndex >= m_resultTimeStepIndexToWellTimeStepIndex.size() ) { return false; } size_t wellTimeStepIndex = m_resultTimeStepIndexToWellTimeStepIndex[resultTimeStepIndex]; if ( wellTimeStepIndex == cvf::UNDEFINED_SIZE_T ) return false; if ( wellResultFrame( resultTimeStepIndex ).m_wellHead.isCell() ) return true; const std::vector& resBranches = wellResultFrame( resultTimeStepIndex ).m_wellResultBranches; for ( size_t i = 0; i < resBranches.size(); ++i ) { for ( size_t cIdx = 0; cIdx < resBranches[i].m_branchResultPoints.size(); ++cIdx ) { if ( resBranches[i].m_branchResultPoints[cIdx].isCell() ) return true; } } return false; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool operator==( const RigWellResultPoint& p1, const RigWellResultPoint& p2 ) { return p1.m_gridIndex == p2.m_gridIndex && p1.m_gridCellIndex == p2.m_gridCellIndex && p1.m_ertBranchId == p2.m_ertBranchId && p1.m_ertSegmentId == p2.m_ertSegmentId; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigSimWellData::computeStaticWellCellPath() const { if ( m_wellCellsTimeSteps.size() == 0 ) return; // Mapping of Branch ERT ID to ResultPoint list std::map> staticWellBranches; // Add ResultCell data from the first timestep to the final result. for ( size_t bIdx = 0; bIdx < m_wellCellsTimeSteps[0].m_wellResultBranches.size(); ++bIdx ) { int branchErtId = m_wellCellsTimeSteps[0].m_wellResultBranches[bIdx].m_ertBranchId; const std::vector& frameCells = m_wellCellsTimeSteps[0].m_wellResultBranches[bIdx].m_branchResultPoints; std::list& branch = staticWellBranches[branchErtId]; for ( size_t cIdx = 0; cIdx < frameCells.size(); ++cIdx ) { branch.push_back( frameCells[cIdx] ); } } for ( size_t tIdx = 1; tIdx < m_wellCellsTimeSteps.size(); ++tIdx ) { // Merge well branches separately for ( size_t bIdx = 0; bIdx < m_wellCellsTimeSteps[tIdx].m_wellResultBranches.size(); ++bIdx ) { int branchId = m_wellCellsTimeSteps[tIdx].m_wellResultBranches[bIdx].m_ertBranchId; const std::vector& resBranch = m_wellCellsTimeSteps[tIdx].m_wellResultBranches[bIdx].m_branchResultPoints; std::list& stBranch = staticWellBranches[branchId]; std::list::iterator sEndIt; size_t rStartIdx = -1; size_t rEndIdx = -1; // First detect if we have cells on the start of the result frame, that is not in the static frame { sEndIt = stBranch.begin(); bool found = false; if ( !stBranch.empty() ) { for ( rEndIdx = 0; !found && rEndIdx < resBranch.size(); ++rEndIdx ) { if ( ( *sEndIt ) == ( resBranch[rEndIdx] ) ) { found = true; break; } } } if ( found ) { if ( rEndIdx > 0 ) { // Found cells in start, merge them in for ( size_t cIdx = 0; cIdx < rEndIdx; ++cIdx ) { stBranch.insert( sEndIt, resBranch[cIdx] ); } } } else { // The result probably starts later in the well rEndIdx = 0; } rStartIdx = rEndIdx; } // Now find all result cells in ranges between pairs in the static path // If the result has items that "compete" with those in the static path, // those items are inserted after the ones in the static path. This // is not necessarily correct. They could be in front, and also merged in // strange ways. A geometric test could make this more robust, but we will // not solve before we see that it actually ends up as a problem if ( sEndIt != stBranch.end() ) ++sEndIt; for ( ; sEndIt != stBranch.end(); ++sEndIt ) { bool found = false; for ( rEndIdx += 1; !found && rEndIdx < resBranch.size(); ++rEndIdx ) { if ( ( *sEndIt ) == ( resBranch[rEndIdx] ) ) { found = true; break; } } if ( found ) { if ( rEndIdx - rStartIdx > 1 ) { // Found cell range in result that we do not have in the static result, merge them in for ( size_t cIdx = rStartIdx + 1; cIdx < rEndIdx; ++cIdx ) { stBranch.insert( sEndIt, resBranch[cIdx] ); } } } else { // The static path probably has some extra cells rEndIdx = rStartIdx; } rStartIdx = rEndIdx; } // Then add cells from the end of the resultpath not present in the static path for ( size_t cIdx = rEndIdx + 1; cIdx < resBranch.size(); ++cIdx ) { stBranch.push_back( resBranch[cIdx] ); } } } // Populate the static well info std::map>::iterator bIt; m_staticWellCells.m_wellResultBranches.clear(); m_staticWellCells.m_wellHead = m_wellCellsTimeSteps[0].m_wellHead; for ( bIt = staticWellBranches.begin(); bIt != staticWellBranches.end(); ++bIt ) { // Copy from first time step RigWellResultBranch rigBranch; rigBranch.m_ertBranchId = bIt->first; std::list& branch = bIt->second; std::list::iterator cIt; for ( cIt = branch.begin(); cIt != branch.end(); ++cIt ) { rigBranch.m_branchResultPoints.push_back( *cIt ); } m_staticWellCells.m_wellResultBranches.push_back( rigBranch ); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigSimWellData::setMultiSegmentWell( bool isMultiSegmentWell ) { m_isMultiSegmentWell = isMultiSegmentWell; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RigSimWellData::isMultiSegmentWell() const { return m_isMultiSegmentWell; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigWellResultFrame::WellProductionType RigSimWellData::wellProductionType( size_t resultTimeStepIndex ) const { if ( hasWellResult( resultTimeStepIndex ) ) { const RigWellResultFrame& wResFrame = wellResultFrame( resultTimeStepIndex ); return wResFrame.m_productionType; } else { return RigWellResultFrame::UNDEFINED_PRODUCTION_TYPE; } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const RigWellResultFrame& RigSimWellData::staticWellCells() const { // Make sure we have computed the static representation of the well if ( m_staticWellCells.m_wellResultBranches.size() == 0 ) { computeStaticWellCellPath(); } return m_staticWellCells; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RigSimWellData::isOpen( size_t resultTimeStepIndex ) const { if ( hasWellResult( resultTimeStepIndex ) ) { const RigWellResultFrame& wResFrame = wellResultFrame( resultTimeStepIndex ); return wResFrame.m_isOpen; } else { return false; } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const RigWellResultPoint* RigWellResultFrame::findResultCellWellHeadIncluded( size_t gridIndex, size_t gridCellIndex ) const { const RigWellResultPoint* wellResultPoint = findResultCellWellHeadExcluded( gridIndex, gridCellIndex ); if ( wellResultPoint ) return wellResultPoint; // If we could not find the cell among the real connections, we try the wellhead. // The wellhead does however not have a real connection state, and is rendering using pipe color // https://github.com/OPM/ResInsight/issues/4328 // This behavior was different prior to release 2019.04 and was rendered as a closed connection (gray) // https://github.com/OPM/ResInsight/issues/712 if ( m_wellHead.m_gridCellIndex == gridCellIndex && m_wellHead.m_gridIndex == gridIndex ) { return &m_wellHead; } return nullptr; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const RigWellResultPoint* RigWellResultFrame::findResultCellWellHeadExcluded( size_t gridIndex, size_t gridCellIndex ) const { CVF_ASSERT( gridIndex != cvf::UNDEFINED_SIZE_T && gridCellIndex != cvf::UNDEFINED_SIZE_T ); for ( size_t wb = 0; wb < m_wellResultBranches.size(); ++wb ) { for ( size_t wc = 0; wc < m_wellResultBranches[wb].m_branchResultPoints.size(); ++wc ) { if ( m_wellResultBranches[wb].m_branchResultPoints[wc].m_gridCellIndex == gridCellIndex && m_wellResultBranches[wb].m_branchResultPoints[wc].m_gridIndex == gridIndex ) { return &( m_wellResultBranches[wb].m_branchResultPoints[wc] ); } } } return nullptr; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigWellResultPoint RigWellResultFrame::wellHeadOrStartCell() const { if ( m_wellHead.isCell() ) return m_wellHead; for ( const RigWellResultBranch& resBranch : m_wellResultBranches ) { for ( const RigWellResultPoint& wrp : resBranch.m_branchResultPoints ) { if ( wrp.isCell() ) return wrp; } } return m_wellHead; // Nothing else to do }