///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) Statoil ASA // Copyright (C) Ceetron Solutions AS // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigFlowDiagStatCalc.h" #include "RigCaseCellResultsData.h" #include "RigFlowDiagResults.h" #include "RigStatisticsMath.h" #include "RigWeightedMeanCalc.h" #include "RimEclipseResultCase.h" #include //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigFlowDiagStatCalc::RigFlowDiagStatCalc( RigFlowDiagResults* flowDiagResults, const RigFlowDiagResultAddress& resVarAddr ) : m_resVarAddr( resVarAddr ) { m_resultsData = flowDiagResults; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigFlowDiagStatCalc::minMaxCellScalarValues( size_t timeStepIndex, double& min, double& max ) { MinMaxAccumulator minMaxCalc( min, max ); const std::vector* vals = m_resultsData->resultValues( m_resVarAddr, timeStepIndex ); if ( vals ) minMaxCalc.addData( *vals ); min = minMaxCalc.min; max = minMaxCalc.max; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigFlowDiagStatCalc::posNegClosestToZero( size_t timeStepIndex, double& pos, double& neg ) { PosNegAccumulator posNegCalc( pos, neg ); const std::vector* vals = m_resultsData->resultValues( m_resVarAddr, timeStepIndex ); if ( vals ) posNegCalc.addData( *vals ); pos = posNegCalc.pos; neg = posNegCalc.neg; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigFlowDiagStatCalc::valueSumAndSampleCount( size_t timeStepIndex, double& valueSum, size_t& sampleCount ) { SumCountAccumulator sumCountCalc( valueSum, sampleCount ); const std::vector* vals = m_resultsData->resultValues( m_resVarAddr, timeStepIndex ); if ( vals ) sumCountCalc.addData( *vals ); valueSum = sumCountCalc.valueSum; sampleCount = sumCountCalc.sampleCount; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigFlowDiagStatCalc::addDataToHistogramCalculator( size_t timeStepIndex, RigHistogramCalculator& histogramCalculator ) { const std::vector* vals = m_resultsData->resultValues( m_resVarAddr, timeStepIndex ); if ( vals ) histogramCalculator.addData( *vals ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigFlowDiagStatCalc::uniqueValues( size_t timeStepIndex, std::set& uniqueValues ) { const std::vector* vals = m_resultsData->resultValues( m_resVarAddr, timeStepIndex ); if ( vals ) for ( double val : ( *vals ) ) uniqueValues.insert( static_cast( val ) ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- size_t RigFlowDiagStatCalc::timeStepCount() { return m_resultsData->timeStepCount(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigFlowDiagStatCalc::mobileVolumeWeightedMean( size_t timeStepIndex, double& mean ) { RimEclipseResultCase* eclCase = nullptr; m_resultsData->flowDiagSolution()->firstAncestorOrThisOfType( eclCase ); if ( !eclCase ) return; RigCaseCellResultsData* caseCellResultsData = eclCase->results( RiaDefines::PorosityModelType::MATRIX_MODEL ); RigEclipseResultAddress mobPoreVolResAddr( RiaDefines::ResultCatType::STATIC_NATIVE, RiaResultNames::mobilePoreVolumeName() ); caseCellResultsData->ensureKnownResultLoaded( mobPoreVolResAddr ); const std::vector& weights = caseCellResultsData->cellScalarResults( mobPoreVolResAddr, 0 ); const std::vector* values = m_resultsData->resultValues( m_resVarAddr, timeStepIndex ); const RigActiveCellInfo* actCellInfo = m_resultsData->activeCellInfo( m_resVarAddr ); RigWeightedMeanCalc::weightedMeanOverCells( &weights, values, nullptr, false, actCellInfo, true, &mean ); }