///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2017 Statoil ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "gtest/gtest.h" #include "RigCellGeometryTools.h" #include "RigMainGrid.h" #include // Needed for HUGE_VAL on Linux //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- TEST( RigCellGeometryTools, calculateCellVolumeTest ) { cvf::BoundingBox bbox( cvf::Vec3d( 1.0, -2.0, 5.0 ), cvf::Vec3d( 500.0, 3.0, 1500.0 ) ); cvf::Vec3d extent = bbox.extent(); double bboxVolume = extent.x() * extent.y() * extent.z(); std::array cornerVertices; bbox.cornerVertices( cornerVertices.data() ); // This is a cuboid. The result should be exact EXPECT_DOUBLE_EQ( bboxVolume, RigCellGeometryTools::calculateCellVolume( cornerVertices ) ); // Distort it by adding a tetrahedron to the volume cornerVertices[1].x() += bbox.extent().x() / 3.0; cornerVertices[2].x() += bbox.extent().x() / 3.0; double extraVolume = 0.5 * extent.z() * bbox.extent().x() / 3.0 * extent.y(); EXPECT_DOUBLE_EQ( bboxVolume + extraVolume, RigCellGeometryTools::calculateCellVolume( cornerVertices ) ); // The overlap with the original bounding box should just yield the original bounding box cvf::BoundingBox overlapBoundingBox; std::array overlapVertices; RigCellGeometryTools::estimateHexOverlapWithBoundingBox( cornerVertices, bbox, &overlapVertices, &overlapBoundingBox ); EXPECT_DOUBLE_EQ( bboxVolume, RigCellGeometryTools::calculateCellVolume( overlapVertices ) ); cvf::Vec3d overlapExtent = overlapBoundingBox.extent(); double overlapBBoxVolume = overlapExtent.x() * overlapExtent.y() * overlapExtent.z(); EXPECT_DOUBLE_EQ( bboxVolume, overlapBBoxVolume ); // Shift bounding box by half the original extent in x-direction. // It should now contain the full tetrahedron + half the original bounding box std::array tetrahedronBoxVertices; bbox.cornerVertices( tetrahedronBoxVertices.data() ); cvf::BoundingBox tetrahedronBBox; for ( cvf::Vec3d& corner : tetrahedronBoxVertices ) { corner.x() += 0.5 * bbox.extent().x(); tetrahedronBBox.add( corner ); } RigCellGeometryTools::estimateHexOverlapWithBoundingBox( cornerVertices, tetrahedronBBox, &overlapVertices, &overlapBoundingBox ); EXPECT_DOUBLE_EQ( bboxVolume * 0.5 + extraVolume, RigCellGeometryTools::calculateCellVolume( overlapVertices ) ); // Shift it the rest of the original extent in x-direction. // The bounding box should now contain only the tetrahedron. tetrahedronBBox = cvf::BoundingBox(); for ( cvf::Vec3d& corner : tetrahedronBoxVertices ) { corner.x() += 0.5 * bbox.extent().x(); tetrahedronBBox.add( corner ); } RigCellGeometryTools::estimateHexOverlapWithBoundingBox( cornerVertices, tetrahedronBBox, &overlapVertices, &overlapBoundingBox ); EXPECT_DOUBLE_EQ( extraVolume, RigCellGeometryTools::calculateCellVolume( overlapVertices ) ); // Expand original bounding box to be much larger than the hex bbox.expand( 2000 ); RigCellGeometryTools::estimateHexOverlapWithBoundingBox( cornerVertices, bbox, &overlapVertices, &overlapBoundingBox ); EXPECT_DOUBLE_EQ( bboxVolume + extraVolume, RigCellGeometryTools::calculateCellVolume( overlapVertices ) ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- TEST( RigCellGeometryTools, calculateCellVolumeTest2 ) { cvf::BoundingBox bbox( cvf::Vec3d( 0.0, 0.0, 0.0 ), cvf::Vec3d( 100.0, 100.0, 100.0 ) ); std::array cornerVertices; bbox.cornerVertices( cornerVertices.data() ); cornerVertices[5].z() = cornerVertices[1].z(); cornerVertices[6].z() = cornerVertices[2].z(); double totalCellVolume = 0.5 * 100.0 * 100.0 * 100.0; EXPECT_DOUBLE_EQ( totalCellVolume, RigCellGeometryTools::calculateCellVolume( cornerVertices ) ); cvf::BoundingBox innerBBox( cvf::Vec3d( 25.0, 25.0, -10.0 ), cvf::Vec3d( 75.0, 75.0, 110.0 ) ); double expectedOverlap = 50 * 50 * 25 + 0.5 * 50 * 50 * 50; cvf::BoundingBox overlapBoundingBox; std::array overlapVertices; RigCellGeometryTools::estimateHexOverlapWithBoundingBox( cornerVertices, innerBBox, &overlapVertices, &overlapBoundingBox ); EXPECT_DOUBLE_EQ( expectedOverlap, RigCellGeometryTools::calculateCellVolume( overlapVertices ) ); cvf::BoundingBox smallerInnerBBox( cvf::Vec3d( 25.0, 25.0, -10.0 ), cvf::Vec3d( 75.0, 75.0, 25.0 ) ); RigCellGeometryTools::estimateHexOverlapWithBoundingBox( cornerVertices, smallerInnerBBox, &overlapVertices, &overlapBoundingBox ); EXPECT_DOUBLE_EQ( 50 * 50 * 25, RigCellGeometryTools::calculateCellVolume( overlapVertices ) ); cvf::BoundingBox smallerBBox( cvf::Vec3d( 50.0, 50.0, 0.0 ), cvf::Vec3d( 100.0, 100.0, 100.0 ) ); RigCellGeometryTools::estimateHexOverlapWithBoundingBox( cornerVertices, smallerBBox, &overlapVertices, &overlapBoundingBox ); double tipVolume = 50 * 50 * 50 * 0.5; EXPECT_DOUBLE_EQ( tipVolume, RigCellGeometryTools::calculateCellVolume( overlapVertices ) ); cvf::BoundingBox smallerBBox2( cvf::Vec3d( 0.0, 0.0, 0.0 ), cvf::Vec3d( 50.0, 50.0, 100.0 ) ); RigCellGeometryTools::estimateHexOverlapWithBoundingBox( cornerVertices, smallerBBox2, &overlapVertices, &overlapBoundingBox ); double expectedVolume = ( totalCellVolume - 2 * tipVolume ) * 0.5; EXPECT_DOUBLE_EQ( expectedVolume, RigCellGeometryTools::calculateCellVolume( overlapVertices ) ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- TEST( RigCellGeometryTools, createPolygonTest ) { cvf::Vec3d a = cvf::Vec3d( 1, 1, 1 ); cvf::Vec3d b = cvf::Vec3d( 1, 3.14159265359, 1 ); cvf::Vec3d b2 = cvf::Vec3d( 1, 3.1415926536, 1 ); cvf::Vec3d c = cvf::Vec3d( 5, 5, 1 ); cvf::Vec3d d = cvf::Vec3d( -2, 8, 1 ); std::list> intersectionLineSegments; intersectionLineSegments.push_back( { a, b } ); intersectionLineSegments.push_back( { b2, c } ); intersectionLineSegments.push_back( { c, d } ); intersectionLineSegments.push_back( { a, d } ); std::vector> polygons; RigCellGeometryTools::createPolygonFromLineSegments( intersectionLineSegments, polygons ); EXPECT_EQ( polygons.size(), (size_t)1 ); EXPECT_EQ( polygons[0].size(), (size_t)5 ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- TEST( RigCellGeometryTools, createMultiplePolygonTest ) { cvf::Vec3d a1 = cvf::Vec3d( 5, 4, 1 ); cvf::Vec3d b1 = cvf::Vec3d( 6, 3, 1 ); cvf::Vec3d c1 = cvf::Vec3d( 6, 4, 1 ); cvf::Vec3d a2 = cvf::Vec3d( 2, 1, 1 ); cvf::Vec3d b2 = cvf::Vec3d( 1, 3, 1 ); cvf::Vec3d c2 = cvf::Vec3d( 1, 5, 1 ); std::list> intersectionLineSegments; intersectionLineSegments.push_back( { a1, b1 } ); intersectionLineSegments.push_back( { b1, c1 } ); intersectionLineSegments.push_back( { a2, b2 } ); intersectionLineSegments.push_back( { b2, c2 } ); std::vector> polygons; RigCellGeometryTools::createPolygonFromLineSegments( intersectionLineSegments, polygons ); EXPECT_EQ( polygons.size(), (size_t)2 ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- TEST( RigCellGeometryTools, createPolygonTestRealCase ) { std::list> intersectionLineSegments; intersectionLineSegments.push_back( { cvf::Vec3d( 13.498900632511830, 20.000000000000000, -0.011799300447865143 ), cvf::Vec3d( 13.498900632515129, 20.000000000000000, -0.011874744050458887 ) } ); intersectionLineSegments.push_back( { cvf::Vec3d( 13.498900633056895, 20.000000000000000, -0.024268930302180504 ), cvf::Vec3d( 13.498900632515127, 20.000000000000000, -0.011874744050458887 ) } ); intersectionLineSegments.push_back( { cvf::Vec3d( 13.498900632511830, 20.000000000000000, -0.011799300447865143 ), cvf::Vec3d( 13.498900631970063, 20.000000000000000, 0.00059488709383226715 ) } ); intersectionLineSegments.push_back( { cvf::Vec3d( 13.498900195597713, 10.000000000000000, -0.016369358494277231 ), cvf::Vec3d( 13.498900195056242, 10.000000000000000, -0.0039819325234285293 ) } ); intersectionLineSegments.push_back( { cvf::Vec3d( 13.498900195597711, 10.000000000000000, -0.016369358494277241 ), cvf::Vec3d( 13.498900195600806, 10.000000000000000, -0.016440172032184591 ) } ); intersectionLineSegments.push_back( { cvf::Vec3d( 13.498900196142280, 10.000000000000000, -0.028827609381707260 ), cvf::Vec3d( 13.498900195600807, 10.000000000000000, -0.016440172032184591 ) } ); intersectionLineSegments.push_back( { cvf::Vec3d( 13.498900196142280, 10.000000000000000, -0.028827609381707260 ), cvf::Vec3d( 13.498900414562046, 14.999139949621291, -0.026549475935230070 ) } ); intersectionLineSegments.push_back( { cvf::Vec3d( 13.498900414637365, 15.000863944878075, -0.026548599914369600 ), cvf::Vec3d( 13.498900633056895, 20.000000000000000, -0.024268930302180504 ) } ); intersectionLineSegments.push_back( { cvf::Vec3d( 13.498900414637365, 15.000863944878075, -0.026548599914369600 ), cvf::Vec3d( 13.498900414562046, 14.999139949621291, -0.026549475935230073 ) } ); intersectionLineSegments.push_back( { cvf::Vec3d( 13.498900413511738, 14.999966890459870, -0.0016942968682188385 ), cvf::Vec3d( 13.498900413514638, 15.000033259475705, -0.0016942630763332898 ) } ); intersectionLineSegments.push_back( { cvf::Vec3d( 13.498900631970063, 20.000000000000000, 0.00059488709383226715 ), cvf::Vec3d( 13.498900413514637, 15.000033259475705, -0.0016942630763332901 ) } ); intersectionLineSegments.push_back( { cvf::Vec3d( 13.498900413511738, 14.999966890459870, -0.0016942968682188385 ), cvf::Vec3d( 13.498900195056240, 10.000000000000000, -0.0039819325234285319 ) } ); std::vector> polygons; RigCellGeometryTools::createPolygonFromLineSegments( intersectionLineSegments, polygons ); EXPECT_EQ( polygons.size(), (size_t)1 ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- TEST( RigCellGeometryTools, findCellAverageZTest ) { std::array hexCorners; hexCorners[0] = cvf::Vec3d( 0, 0, 0 ); hexCorners[1] = cvf::Vec3d( 1, 0, 0 ); hexCorners[2] = cvf::Vec3d( 1, 1, 0 ); hexCorners[3] = cvf::Vec3d( 0, 1, 0 ); hexCorners[4] = cvf::Vec3d( 0, 0, 1 ); hexCorners[5] = cvf::Vec3d( 1, 0, 1 ); hexCorners[6] = cvf::Vec3d( 1, 1, 1 ); hexCorners[7] = cvf::Vec3d( 0, 1, 1 ); cvf::Vec3d localX; cvf::Vec3d localY; cvf::Vec3d localZ; RigCellGeometryTools::findCellLocalXYZ( hexCorners, localX, localY, localZ ); EXPECT_DOUBLE_EQ( localX[0], 1 ); EXPECT_DOUBLE_EQ( localX[1], 0 ); EXPECT_DOUBLE_EQ( localX[2], 0 ); EXPECT_DOUBLE_EQ( localY[0], 0 ); EXPECT_DOUBLE_EQ( localY[1], 1 ); EXPECT_DOUBLE_EQ( localY[2], 0 ); EXPECT_DOUBLE_EQ( localZ[0], 0 ); EXPECT_DOUBLE_EQ( localZ[1], 0 ); EXPECT_DOUBLE_EQ( localZ[2], 1 ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- TEST( RigCellGeometryTools, lengthCalcTest ) { std::vector polygonExample; polygonExample.push_back( cvf::Vec3d( 0.00, 0.00, 0.0 ) ); polygonExample.push_back( cvf::Vec3d( 0.00, 2.50, 0.0 ) ); polygonExample.push_back( cvf::Vec3d( 1.50, 2.50, 0.0 ) ); polygonExample.push_back( cvf::Vec3d( 1.50, 0.00, 0.0 ) ); double length = RigCellGeometryTools::polygonLengthInLocalXdirWeightedByArea( polygonExample ); EXPECT_DOUBLE_EQ( length, 1.5 ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- TEST( RigCellGeometryTools, lengthCalcTestTriangle ) { std::vector trianglePolygonExample; trianglePolygonExample.push_back( cvf::Vec3d( 0.00, 0.00, 0.0 ) ); trianglePolygonExample.push_back( cvf::Vec3d( 2.50, 2.50, 0.0 ) ); trianglePolygonExample.push_back( cvf::Vec3d( 2.50, 0.00, 0.0 ) ); double length = RigCellGeometryTools::polygonLengthInLocalXdirWeightedByArea( trianglePolygonExample ); EXPECT_GT( length, 1.7 ); EXPECT_LT( length, 1.8 ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- TEST( RigCellGeometryTools, polylinePolygonIntersectionTest ) { std::vector polygonExample; polygonExample.push_back( cvf::Vec3d( 0.00, 0.00, 0.0 ) ); polygonExample.push_back( cvf::Vec3d( 0.00, 2.50, 0.0 ) ); polygonExample.push_back( cvf::Vec3d( 1.50, 2.50, 0.0 ) ); polygonExample.push_back( cvf::Vec3d( 1.50, 0.00, 0.0 ) ); std::vector polyLine; polyLine.push_back( cvf::Vec3d( -1.00, 0.00, 1.0 ) ); polyLine.push_back( cvf::Vec3d( 1.00, 2.0, 2.0 ) ); polyLine.push_back( cvf::Vec3d( 1.00, 3.00, 3.0 ) ); { std::vector> clippedLines = RigCellGeometryTools::clipPolylineByPolygon( polyLine, polygonExample, RigCellGeometryTools::INTERPOLATE_LINE_Z ); EXPECT_EQ( (size_t)1, clippedLines.size() ); EXPECT_EQ( (size_t)3, clippedLines.front().size() ); EXPECT_EQ( 0.0, clippedLines.front()[0].x() ); EXPECT_EQ( 1.0, clippedLines.front()[0].y() ); EXPECT_EQ( 1.5, clippedLines.front()[0].z() ); EXPECT_EQ( 1.0, clippedLines.front()[1].x() ); EXPECT_EQ( 2.0, clippedLines.front()[1].y() ); EXPECT_EQ( 2.0, clippedLines.front()[1].z() ); EXPECT_EQ( 1.0, clippedLines.front()[2].x() ); EXPECT_EQ( 2.5, clippedLines.front()[2].y() ); EXPECT_EQ( 2.5, clippedLines.front()[2].z() ); } { std::vector> clippedLines = RigCellGeometryTools::clipPolylineByPolygon( polyLine, polygonExample, RigCellGeometryTools::USE_HUGEVAL ); EXPECT_EQ( (size_t)1, clippedLines.size() ); EXPECT_EQ( (size_t)3, clippedLines.front().size() ); EXPECT_EQ( 0.0, clippedLines.front()[0].x() ); EXPECT_EQ( 1.0, clippedLines.front()[0].y() ); EXPECT_EQ( HUGE_VAL, clippedLines.front()[0].z() ); EXPECT_EQ( 1.0, clippedLines.front()[1].x() ); EXPECT_EQ( 2.0, clippedLines.front()[1].y() ); EXPECT_EQ( 2.0, clippedLines.front()[1].z() ); EXPECT_EQ( 1.0, clippedLines.front()[2].x() ); EXPECT_EQ( 2.5, clippedLines.front()[2].y() ); EXPECT_EQ( HUGE_VAL, clippedLines.front()[2].z() ); } polyLine.push_back( { -0.5, 1.5, 0.0 } ); { std::vector> clippedLines = RigCellGeometryTools::clipPolylineByPolygon( polyLine, polygonExample, RigCellGeometryTools::USE_HUGEVAL ); EXPECT_EQ( (size_t)2, clippedLines.size() ); EXPECT_EQ( (size_t)2, clippedLines.front().size() ); EXPECT_EQ( (size_t)3, clippedLines.back().size() ); EXPECT_EQ( 0.5, clippedLines.front()[0].x() ); EXPECT_EQ( 2.5, clippedLines.front()[0].y() ); EXPECT_EQ( HUGE_VAL, clippedLines.front()[0].z() ); EXPECT_EQ( 0.0, clippedLines.front()[1].x() ); EXPECT_EQ( 2.0, clippedLines.front()[1].y() ); EXPECT_EQ( HUGE_VAL, clippedLines.front()[1].z() ); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- TEST( RigCellGeometryTools, polylinePolygonIntersectionTest2 ) // Recreating bug... { std::vector polygonExample; polygonExample.push_back( cvf::Vec3d( 1.00, 0.00, 0.0 ) ); polygonExample.push_back( cvf::Vec3d( 0.00, 1.00, 0.0 ) ); polygonExample.push_back( cvf::Vec3d( -1.00, 0.00, 0.0 ) ); polygonExample.push_back( cvf::Vec3d( 0.00, -1.00, 0.0 ) ); std::vector polyLine1; polyLine1.push_back( cvf::Vec3d( 2.0, 2.0, 0.0 ) ); polyLine1.push_back( cvf::Vec3d( 0.0, 0.0, 0.0 ) ); polyLine1.push_back( cvf::Vec3d( -2.0, -2.0, 0.0 ) ); std::vector> clippedLines1 = RigCellGeometryTools::clipPolylineByPolygon( polyLine1, polygonExample, RigCellGeometryTools::INTERPOLATE_LINE_Z ); EXPECT_EQ( (size_t)1, clippedLines1.size() ); EXPECT_EQ( 0.0, clippedLines1.front()[0].z() ); std::vector polyLine2; polyLine2.push_back( cvf::Vec3d( 2.0, 0.0, 0.0 ) ); polyLine2.push_back( cvf::Vec3d( 0.0, 0.0, 0.0 ) ); polyLine2.push_back( cvf::Vec3d( -2.0, 0.0, 0.0 ) ); std::vector> clippedLines2 = RigCellGeometryTools::clipPolylineByPolygon( polyLine2, polygonExample, RigCellGeometryTools::INTERPOLATE_LINE_Z ); EXPECT_EQ( (size_t)1, clippedLines2.size() ); EXPECT_EQ( 0.0, clippedLines2.front()[0].z() ); // Since both the line and the polygon is in the z=0 plane, the expected clipped line should be in this plane } #include "Completions/RigWellPathStimplanIntersector.h" //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- TEST( RigWellPathStimplanIntersector, intersection ) { { cvf::Mat4d fractureXf = cvf::Mat4d::IDENTITY; fractureXf.setTranslation( { 50.0f, 0.0f, 0.0f } ); // std::vector fracturePolygon ={ {0.0f, 0.0f, 0.0f}, {5.0f, 10.0f, 0.0f}, {10.0f, 0.0f, 0.0f} }; double perforationLength = 25.0; std::vector wellPathPoints = { { 50.0f - 4.0f, 6.0f, 10.0f }, { 50.0f + 6.0f, 6.0f, 0.0f }, { 50.0f + 10.0f, 10.0f, -100.0f } }; double wellRadius = 1.5; std::vector> stpCellPolygons = { { { 0.0f, 0.0f, 0.0f }, { 0.0f, 5.0f, 0.0f }, { 5.0f, 5.0f, 0.0f }, { 5.0f, 0.0f, 0.0f } }, { { 0.5f, 0.0f, 0.0f }, { 0.5f, 5.0f, 0.0f }, { 10.0f, 5.0f, 0.0f }, { 10.0f, 0.0f, 0.0f } }, { { 0.0f, 5.0f, 0.0f }, { 0.0f, 10.0f, 0.0f }, { 5.0f, 10.0f, 0.0f }, { 5.0f, 5.0f, 0.0f } }, { { 5.0f, 5.0f, 0.0f }, { 5.0f, 10.0f, 0.0f }, { 10.0f, 10.0f, 0.0f }, { 10.0f, 5.0f, 0.0f } }, }; std::map stimPlanCellIdxToIntersectionInfoMap; RigWellPathStimplanIntersectorTester::testCalculate( fractureXf, wellPathPoints, wellRadius, perforationLength, stpCellPolygons, stimPlanCellIdxToIntersectionInfoMap ); EXPECT_EQ( (size_t)2, stimPlanCellIdxToIntersectionInfoMap.size() ); auto it = stimPlanCellIdxToIntersectionInfoMap.begin(); EXPECT_EQ( (size_t)2, it->first ); EXPECT_EQ( 1, it->second.endpointCount ); ++it; EXPECT_EQ( (size_t)3, it->first ); EXPECT_EQ( 1, it->second.endpointCount ); } { cvf::Mat4d fractureXf = cvf::Mat4d::IDENTITY; // std::vector fracturePolygon ={ {0.0f, 0.0f, 0.0f}, {5.0f, 10.0f, 0.0f}, {10.0f, 0.0f, // 0.0f} }; double perforationLength = 10; double wellRadius = 1.5; std::vector> stpCellPolygons = { { { 0.0f, 0.0f, 0.0f }, { 0.0f, 5.0f, 0.0f }, { 5.0f, 5.0f, 0.0f }, { 5.0f, 0.0f, 0.0f } }, { { 5.0f, 0.0f, 0.0f }, { 5.0f, 5.0f, 0.0f }, { 10.0f, 5.0f, 0.0f }, { 10.0f, 0.0f, 0.0f } }, { { 0.0f, 5.0f, 0.0f }, { 0.0f, 10.0f, 0.0f }, { 5.0f, 10.0f, 0.0f }, { 5.0f, 5.0f, 0.0f } }, { { 5.0f, 5.0f, 0.0f }, { 5.0f, 10.0f, 0.0f }, { 10.0f, 10.0f, 0.0f }, { 10.0f, 5.0f, 0.0f } }, }; { std::map stimPlanCellIdxToIntersectionInfoMap; std::vector wellPathPoints = { { 1.0f, 0.5f, 10.0f }, { 1.0f, 1.5f, -10.0f } }; RigWellPathStimplanIntersectorTester::testCalculate( fractureXf, wellPathPoints, wellRadius, perforationLength, stpCellPolygons, stimPlanCellIdxToIntersectionInfoMap ); EXPECT_EQ( (size_t)1, stimPlanCellIdxToIntersectionInfoMap.size() ); auto it = stimPlanCellIdxToIntersectionInfoMap.begin(); EXPECT_EQ( (size_t)0, it->first ); EXPECT_EQ( 2, it->second.endpointCount ); } { std::map stimPlanCellIdxToIntersectionInfoMap; std::vector wellPathPoints = { { 1.0f, 0.5f, 10.0f }, { 1.0f, 1.0f, 0.5f } }; RigWellPathStimplanIntersectorTester::testCalculate( fractureXf, wellPathPoints, wellRadius, perforationLength, stpCellPolygons, stimPlanCellIdxToIntersectionInfoMap ); EXPECT_EQ( (size_t)1, stimPlanCellIdxToIntersectionInfoMap.size() ); auto it = stimPlanCellIdxToIntersectionInfoMap.begin(); EXPECT_EQ( (size_t)0, it->first ); EXPECT_EQ( 2, it->second.endpointCount ); } { std::map stimPlanCellIdxToIntersectionInfoMap; std::vector wellPathPoints = { { 1.0f, 0.5f, 10.0f }, { 1.0f, 1.0f, 0.5f }, { 1.0f, 1.5f, -0.5f }, { 1.0f, 2.0f, -10.0f } }; RigWellPathStimplanIntersectorTester::testCalculate( fractureXf, wellPathPoints, wellRadius, perforationLength, stpCellPolygons, stimPlanCellIdxToIntersectionInfoMap ); EXPECT_EQ( (size_t)1, stimPlanCellIdxToIntersectionInfoMap.size() ); auto it = stimPlanCellIdxToIntersectionInfoMap.begin(); EXPECT_EQ( (size_t)0, it->first ); EXPECT_EQ( 2, it->second.endpointCount ); } } } ////////////////////////////////////////////////////////////////////////////////////////////////////////// // // Test of whether we can transport edge information trough clipper clipping // Seems as if it might be possible, but clipper will ignore the edge information // processed by the callback if one of the edges is horizontal // #include "clipper/clipper.hpp" double clipperConversionFactor2 = 10000; // For transform to clipper int ClipperLib::IntPoint toClipperEdgePoint( const cvf::Vec3d& cvfPoint ) { int xInt = cvfPoint.x() * clipperConversionFactor2; int yInt = cvfPoint.y() * clipperConversionFactor2; int zInt = cvfPoint.z(); return ClipperLib::IntPoint( xInt, yInt, zInt ); } cvf::Vec3d fromClipperEdgePoint( const ClipperLib::IntPoint& clipPoint ) { double zDValue; if ( clipPoint.Z == std::numeric_limits::max() ) { zDValue = HUGE_VAL; } else { zDValue = clipPoint.Z; } return cvf::Vec3d( clipPoint.X / clipperConversionFactor2, clipPoint.Y / clipperConversionFactor2, zDValue ); } void swapPointsIfNeedeed( ClipperLib::IntPoint*& p1, ClipperLib::IntPoint*& p2 ) { if ( p1->Z > p2->Z ) { std::swap( p1, p2 ); } if ( ( p2->Z - p1->Z ) > 1 ) // End edge of polygon { std::swap( p1, p2 ); // Swap back } } void clipperEdgeIntersectCallback( ClipperLib::IntPoint& e1bot, ClipperLib::IntPoint& e1top, ClipperLib::IntPoint& e2bot, ClipperLib::IntPoint& e2top, ClipperLib::IntPoint& pt ) { ClipperLib::IntPoint* e11 = &e1bot; ClipperLib::IntPoint* e12 = &e1top; ClipperLib::IntPoint* e21 = &e2bot; ClipperLib::IntPoint* e22 = &e2top; swapPointsIfNeedeed( e11, e12 ); swapPointsIfNeedeed( e21, e22 ); cvf::Vec3f e1( e12->X - e11->X, e12->Y - e11->Y, 0.0 ); cvf::Vec3f e2( e22->X - e21->X, e22->Y - e21->Y, 0.0 ); cvf::Vec3f up = e1 ^ e2; if ( up.z() > 0 ) { pt.Z = e12->Z; std::cout << "E1 :" << e11->Z << " " << e12->Z << std::endl; std::cout << "E2 :" << e21->Z << " " << e22->Z << std::endl << std::endl; } else { pt.Z = e22->Z; std::cout << "E1 :" << e21->Z << " " << e22->Z << std::endl; std::cout << "E2 :" << e11->Z << " " << e12->Z << std::endl << std::endl; } } TEST( RigCellGeometryTools, ClipperEdgeTracking ) { // If the first edges of the polygons are horizontal, the edge tracking will fail. // Encode polygon and edge into Z coordinate of the vertex std::vector polygon1 = { { 0.0, 0.51, 1002.0 }, { 1.0, 0.5, 1000.0 }, { 0.0, 1.0, 1001.0 } }; std::vector polygon2 = { { 0.5, 0.01, 2002.0 }, { 1.0, 0.0, 2000.0 }, { 0.5, 1.0, 2001.0 } }; std::vector> clippedPolygons; // Convert to int for clipper library and store as clipper "path" ClipperLib::Path polygon1path; for ( const cvf::Vec3d& v : polygon1 ) { polygon1path.push_back( toClipperEdgePoint( v ) ); } ClipperLib::Path polygon2path; for ( const cvf::Vec3d& v : polygon2 ) { polygon2path.push_back( toClipperEdgePoint( v ) ); } ClipperLib::Clipper clpr; clpr.AddPath( polygon1path, ClipperLib::ptSubject, true ); clpr.AddPath( polygon2path, ClipperLib::ptClip, true ); clpr.ZFillFunction( &clipperEdgeIntersectCallback ); ClipperLib::Paths solution; clpr.Execute( ClipperLib::ctIntersection, solution, ClipperLib::pftEvenOdd, ClipperLib::pftEvenOdd ); // Convert back to std::vector > for ( ClipperLib::Path pathInSol : solution ) { std::vector clippedPolygon; for ( ClipperLib::IntPoint IntPosition : pathInSol ) { clippedPolygon.push_back( fromClipperEdgePoint( IntPosition ) ); } clippedPolygons.push_back( clippedPolygon ); } int pIdx = 1; for ( auto& polygon : clippedPolygons ) { std::cout << "Polygon: " << pIdx << std::endl; for ( auto& point : polygon ) { std::cout << " [ " << point[0] << ", " << point[1] << ", " << point[2] << " ]" << std::endl; } pIdx++; } }