///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) Statoil ASA // Copyright (C) Ceetron Solutions AS // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigFlowDiagStatCalc.h" #include "RigCaseCellResultsData.h" #include "RigFlowDiagResults.h" #include "RigStatisticsMath.h" #include "RigWeightedMeanCalc.h" #include "RimEclipseResultCase.h" #include //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigFlowDiagStatCalc::RigFlowDiagStatCalc(RigFlowDiagResults* flowDiagResults, const RigFlowDiagResultAddress& resVarAddr) : m_resVarAddr(resVarAddr) { m_resultsData = flowDiagResults; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigFlowDiagStatCalc::minMaxCellScalarValues(size_t timeStepIndex, double& min, double& max) { MinMaxAccumulator minMaxCalc(min, max); const std::vector* vals = m_resultsData->resultValues(m_resVarAddr, timeStepIndex); if (vals) minMaxCalc.addData(*vals); min = minMaxCalc.min; max = minMaxCalc.max; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigFlowDiagStatCalc::posNegClosestToZero(size_t timeStepIndex, double& pos, double& neg) { PosNegAccumulator posNegCalc(pos, neg); const std::vector* vals = m_resultsData->resultValues(m_resVarAddr, timeStepIndex); if ( vals ) posNegCalc.addData(*vals); pos = posNegCalc.pos; neg = posNegCalc.neg; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigFlowDiagStatCalc::valueSumAndSampleCount(size_t timeStepIndex, double& valueSum, size_t& sampleCount) { SumCountAccumulator sumCountCalc(valueSum, sampleCount); const std::vector* vals = m_resultsData->resultValues(m_resVarAddr, timeStepIndex); if ( vals ) sumCountCalc.addData(*vals); valueSum = sumCountCalc.valueSum; sampleCount = sumCountCalc.sampleCount; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigFlowDiagStatCalc::addDataToHistogramCalculator(size_t timeStepIndex, RigHistogramCalculator& histogramCalculator) { const std::vector* vals = m_resultsData->resultValues(m_resVarAddr, timeStepIndex); if ( vals ) histogramCalculator.addData(*vals); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigFlowDiagStatCalc::uniqueValues(size_t timeStepIndex, std::set& uniqueValues) { const std::vector* vals = m_resultsData->resultValues(m_resVarAddr, timeStepIndex); if ( vals ) for ( double val : (*vals) ) uniqueValues.insert(static_cast(val)); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- size_t RigFlowDiagStatCalc::timeStepCount() { return m_resultsData->timeStepCount(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigFlowDiagStatCalc::mobileVolumeWeightedMean(size_t timeStepIndex, double& mean) { RimEclipseResultCase* eclCase = nullptr; m_resultsData->flowDiagSolution()->firstAncestorOrThisOfType(eclCase); if (!eclCase) return; RigCaseCellResultsData* caseCellResultsData = eclCase->results(RiaDefines::MATRIX_MODEL); size_t mobPVResultIndex = caseCellResultsData->findOrLoadScalarResult(RiaDefines::ResultCatType::STATIC_NATIVE, RiaDefines::mobilePoreVolumeName()); const std::vector& weights = caseCellResultsData->cellScalarResults(mobPVResultIndex, 0); const std::vector* values = m_resultsData->resultValues(m_resVarAddr, timeStepIndex); const RigActiveCellInfo* actCellInfo = m_resultsData->activeCellInfo(m_resVarAddr); RigWeightedMeanCalc::weightedMeanOverCells(&weights, values, nullptr, false, actCellInfo, true, &mean); }