///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2011- Statoil ASA // Copyright (C) 2013- Ceetron Solutions AS // Copyright (C) 2011-2012 Ceetron AS // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RimEclipseStatisticsCaseEvaluator.h" #include "RigCaseCellResultsData.h" #include "RigEclipseCaseData.h" #include "RigEclipseResultInfo.h" #include "RigMainGrid.h" #include "RigResultAccessorFactory.h" #include "RigResultModifier.h" #include "RigResultModifierFactory.h" #include "RigStatisticsMath.h" #include "RimIdenticalGridCaseGroup.h" #include "RimReservoirCellResultsStorage.h" #include "cafProgressInfo.h" #include #include //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimEclipseStatisticsCaseEvaluator::addNamedResult( RigCaseCellResultsData* destinationCellResults, RiaDefines::ResultCatType resultType, const QString& resultName, size_t activeUnionCellCount ) { // Use time step dates from first result in first source case CVF_ASSERT( m_sourceCases.size() > 0 ); std::vector resAddresses = m_sourceCases[0]->results( RiaDefines::PorosityModelType::MATRIX_MODEL )->existingResults(); std::vector sourceTimeStepInfos = m_sourceCases[0]->results( RiaDefines::PorosityModelType::MATRIX_MODEL )->timeStepInfos( resAddresses[0] ); RigEclipseResultAddress resAddr( resultType, resultName ); destinationCellResults->createResultEntry( resAddr, true ); destinationCellResults->setTimeStepInfos( resAddr, sourceTimeStepInfos ); std::vector>* dataValues = destinationCellResults->modifiableCellScalarResultTimesteps( resAddr ); size_t timeStepCount = std::max( size_t( 1 ), sourceTimeStepInfos.size() ); dataValues->resize( timeStepCount ); // Initializes the size of the destination dataset to active union cell count for ( size_t i = 0; i < timeStepCount; i++ ) { dataValues->at( i ).resize( activeUnionCellCount, HUGE_VAL ); } } QString createResultNameMin( const QString& resultName ) { return resultName + "_MIN"; } QString createResultNameMax( const QString& resultName ) { return resultName + "_MAX"; } QString createResultNameSum( const QString& resultName ) { return resultName + "_SUM"; } QString createResultNameMean( const QString& resultName ) { return resultName + "_MEAN"; } QString createResultNameDev( const QString& resultName ) { return resultName + "_DEV"; } QString createResultNameRange( const QString& resultName ) { return resultName + "_RANGE"; } QString createResultNamePVal( const QString& resultName, double pValPos ) { return resultName + "_P" + QString::number( pValPos ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimEclipseStatisticsCaseEvaluator::evaluateForResults( const QList& resultSpecification ) { CVF_ASSERT( m_destinationCase ); // First build the destination result data structures to receive the statistics addNamedResults( resultSpecification ); // Start the loop that calculates the statistics caf::ProgressInfo progressInfo( m_timeStepIndices.size(), "Computing Statistics" ); for ( size_t timeIndicesIdx = 0; timeIndicesIdx < m_timeStepIndices.size(); timeIndicesIdx++ ) { size_t timeStepIdx = m_timeStepIndices[timeIndicesIdx]; for ( size_t gridIdx = 0; gridIdx < m_destinationCase->gridCount(); gridIdx++ ) { RigGridBase* grid = m_destinationCase->grid( gridIdx ); for ( int resSpecIdx = 0; resSpecIdx < resultSpecification.size(); resSpecIdx++ ) { RiaDefines::PorosityModelType poroModel = resultSpecification[resSpecIdx].m_poroModel; RiaDefines::ResultCatType resultType = resultSpecification[resSpecIdx].m_resType; QString resultName = resultSpecification[resSpecIdx].m_resVarName; size_t activeCellCount = m_destinationCase->activeCellInfo( poroModel )->reservoirActiveCellCount(); if ( activeCellCount == 0 ) continue; size_t dataAccessTimeStepIndex = timeStepIdx; // Always evaluate statistics once, and always use time step index zero if ( resultType == RiaDefines::ResultCatType::STATIC_NATIVE ) { if ( timeIndicesIdx > 0 ) continue; dataAccessTimeStepIndex = 0; } // Build data access objects for source scalar results cvf::Collection sourceDataAccessList; for ( size_t caseIdx = 0; caseIdx < m_sourceCases.size(); caseIdx++ ) { RimEclipseCase* sourceCase = m_sourceCases.at( caseIdx ); // Trigger loading of dataset // NB! Many other functions are based on loading of all time steps at the same time // Use this concept carefully sourceCase->results( poroModel ) ->findOrLoadKnownScalarResultForTimeStep( RigEclipseResultAddress( resultType, resultName ), dataAccessTimeStepIndex ); cvf::ref resultAccessor = RigResultAccessorFactory::createFromResultAddress( sourceCase->eclipseCaseData(), gridIdx, poroModel, dataAccessTimeStepIndex, RigEclipseResultAddress( resultType, resultName ) ); if ( resultAccessor.notNull() ) { sourceDataAccessList.push_back( resultAccessor.p() ); } } // Build data access objects for destination scalar results // Find the created result container, if any, and put its resultAccessor into the enum indexed // destination collection cvf::Collection destinationDataAccessList; std::vector statisticalResultNames( STAT_PARAM_COUNT ); statisticalResultNames[MIN] = createResultNameMin( resultName ); statisticalResultNames[MAX] = createResultNameMax( resultName ); statisticalResultNames[SUM] = createResultNameSum( resultName ); statisticalResultNames[RANGE] = createResultNameRange( resultName ); statisticalResultNames[MEAN] = createResultNameMean( resultName ); statisticalResultNames[STDEV] = createResultNameDev( resultName ); statisticalResultNames[PMIN] = createResultNamePVal( resultName, m_statisticsConfig.m_pMinPos ); statisticalResultNames[PMID] = createResultNamePVal( resultName, m_statisticsConfig.m_pMidPos ); statisticalResultNames[PMAX] = createResultNamePVal( resultName, m_statisticsConfig.m_pMaxPos ); for ( size_t stIdx = 0; stIdx < statisticalResultNames.size(); ++stIdx ) { cvf::ref resultModifier = RigResultModifierFactory::createResultModifier( m_destinationCase, grid->gridIndex(), poroModel, dataAccessTimeStepIndex, RigEclipseResultAddress( resultType, statisticalResultNames[stIdx] ) ); destinationDataAccessList.push_back( resultModifier.p() ); } std::vector statParams( STAT_PARAM_COUNT, HUGE_VAL ); std::vector values( sourceDataAccessList.size(), HUGE_VAL ); int cellCount = static_cast( grid->cellCount() ); // Loop over the cells in the grid, get the case values, and calculate the cell statistics #pragma omp parallel for schedule( dynamic ) firstprivate( statParams, values ) for ( int cellIdx = 0; cellIdx < cellCount; cellIdx++ ) { size_t reservoirCellIndex = grid->reservoirCellIndex( cellIdx ); if ( m_destinationCase->activeCellInfo( poroModel )->isActive( reservoirCellIndex ) ) { // Extract the cell values from each of the cases and assemble them into one vector bool foundAnyValidValues = false; for ( size_t caseIdx = 0; caseIdx < sourceDataAccessList.size(); caseIdx++ ) { double val = sourceDataAccessList.at( caseIdx )->cellScalar( cellIdx ); // Replace huge_val with zero in the statistical computation for the following case if ( m_useZeroAsInactiveCellValue || resultName.toUpper() == "ACTNUM" ) { if ( m_identicalGridCaseGroup->unionOfActiveCells( poroModel )->isActive( reservoirCellIndex ) && val == HUGE_VAL ) { val = 0.0; } } values[caseIdx] = val; if ( val != HUGE_VAL ) { foundAnyValidValues = true; } } // Do the real statistics calculations if ( foundAnyValidValues ) { RigStatisticsMath::calculateBasicStatistics( values, &statParams[MIN], &statParams[MAX], &statParams[SUM], &statParams[RANGE], &statParams[MEAN], &statParams[STDEV] ); // Calculate percentiles if ( m_statisticsConfig.m_calculatePercentiles ) { if ( m_statisticsConfig.m_pValMethod == RimEclipseStatisticsCase::NEAREST_OBSERVATION ) { std::vector pValPoss; pValPoss.push_back( m_statisticsConfig.m_pMinPos ); pValPoss.push_back( m_statisticsConfig.m_pMidPos ); pValPoss.push_back( m_statisticsConfig.m_pMaxPos ); std::vector pVals = RigStatisticsMath::calculateNearestRankPercentiles( values, pValPoss, RigStatisticsMath::PercentileStyle::SWITCHED ); statParams[PMIN] = pVals[0]; statParams[PMID] = pVals[1]; statParams[PMAX] = pVals[2]; } else if ( m_statisticsConfig.m_pValMethod == RimEclipseStatisticsCase::HISTOGRAM_ESTIMATED ) { std::vector histogram; RigHistogramCalculator histCalc( statParams[MIN], statParams[MAX], 100, &histogram ); histCalc.addData( values ); statParams[PMIN] = histCalc.calculatePercentil( m_statisticsConfig.m_pMinPos / 100.0, RigStatisticsMath::PercentileStyle::SWITCHED ); statParams[PMID] = histCalc.calculatePercentil( m_statisticsConfig.m_pMidPos / 100.0, RigStatisticsMath::PercentileStyle::SWITCHED ); statParams[PMAX] = histCalc.calculatePercentil( m_statisticsConfig.m_pMaxPos / 100.0, RigStatisticsMath::PercentileStyle::SWITCHED ); } else if ( m_statisticsConfig.m_pValMethod == RimEclipseStatisticsCase::INTERPOLATED_OBSERVATION ) { std::vector pValPoss; pValPoss.push_back( m_statisticsConfig.m_pMinPos ); pValPoss.push_back( m_statisticsConfig.m_pMidPos ); pValPoss.push_back( m_statisticsConfig.m_pMaxPos ); std::vector pVals = RigStatisticsMath::calculateInterpolatedPercentiles( values, pValPoss, RigStatisticsMath::PercentileStyle::SWITCHED ); statParams[PMIN] = pVals[0]; statParams[PMID] = pVals[1]; statParams[PMAX] = pVals[2]; } else { CVF_ASSERT( false ); } } } // Set the results into the results data structures for ( size_t stIdx = 0; stIdx < statParams.size(); ++stIdx ) { if ( destinationDataAccessList[stIdx].notNull() ) { destinationDataAccessList[stIdx]->setCellScalar( cellIdx, statParams[stIdx] ); } } } } } } // When one time step is completed, free memory and clean up // Microsoft note: On Windows, the maximum number of files open at the same time is 512 // http://msdn.microsoft.com/en-us/library/kdfaxaay%28vs.71%29.aspx for ( size_t caseIdx = 0; caseIdx < m_sourceCases.size(); caseIdx++ ) { RimEclipseCase* eclipseCase = m_sourceCases.at( caseIdx ); if ( !eclipseCase->reservoirViews.size() ) { eclipseCase->results( RiaDefines::PorosityModelType::MATRIX_MODEL )->freeAllocatedResultsData(); eclipseCase->results( RiaDefines::PorosityModelType::FRACTURE_MODEL )->freeAllocatedResultsData(); } } progressInfo.setProgress( timeIndicesIdx ); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimEclipseStatisticsCaseEvaluator::addNamedResults( const QList& resultSpecification ) { for ( int i = 0; i < resultSpecification.size(); i++ ) { RiaDefines::PorosityModelType poroModel = resultSpecification[i].m_poroModel; RiaDefines::ResultCatType resultType = resultSpecification[i].m_resType; QString resultName = resultSpecification[i].m_resVarName; size_t activeCellCount = m_destinationCase->activeCellInfo( poroModel )->reservoirActiveCellCount(); if ( activeCellCount == 0 ) continue; RigCaseCellResultsData* destCellResultsData = m_destinationCase->results( poroModel ); // Placeholder data used to be created here, // this is now moved to RimIdenticalGridCaseGroup::loadMainCaseAndActiveCellInfo() // Create new result data structures to contain the statistical values std::vector statisticalResultNames; statisticalResultNames.push_back( createResultNameMin( resultName ) ); statisticalResultNames.push_back( createResultNameMax( resultName ) ); statisticalResultNames.push_back( createResultNameSum( resultName ) ); statisticalResultNames.push_back( createResultNameMean( resultName ) ); statisticalResultNames.push_back( createResultNameDev( resultName ) ); statisticalResultNames.push_back( createResultNameRange( resultName ) ); if ( m_statisticsConfig.m_calculatePercentiles ) { statisticalResultNames.push_back( createResultNamePVal( resultName, m_statisticsConfig.m_pMinPos ) ); statisticalResultNames.push_back( createResultNamePVal( resultName, m_statisticsConfig.m_pMidPos ) ); statisticalResultNames.push_back( createResultNamePVal( resultName, m_statisticsConfig.m_pMaxPos ) ); } for ( size_t j = 0; j < statisticalResultNames.size(); ++j ) { addNamedResult( destCellResultsData, resultType, statisticalResultNames[j], activeCellCount ); } } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimEclipseStatisticsCaseEvaluator::RimEclipseStatisticsCaseEvaluator( const std::vector& sourceCases, const std::vector& timeStepIndices, const RimStatisticsConfig& statisticsConfig, RigEclipseCaseData* destinationCase, RimIdenticalGridCaseGroup* identicalGridCaseGroup ) : m_sourceCases( sourceCases ) , m_statisticsConfig( statisticsConfig ) , m_destinationCase( destinationCase ) , m_reservoirCellCount( 0 ) , m_timeStepIndices( timeStepIndices ) , m_identicalGridCaseGroup( identicalGridCaseGroup ) , m_useZeroAsInactiveCellValue( false ) { if ( sourceCases.size() > 0 ) { m_reservoirCellCount = sourceCases[0]->eclipseCaseData()->mainGrid()->globalCellArray().size(); } CVF_ASSERT( m_destinationCase ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimEclipseStatisticsCaseEvaluator::useZeroAsValueForInActiveCellsBasedOnUnionOfActiveCells() { m_useZeroAsInactiveCellValue = true; }