/////////////////////////////////////////////////////////////////////////////////
//
//  Copyright (C) 2017     Statoil ASA
//
//  ResInsight is free software: you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation, either version 3 of the License, or
//  (at your option) any later version.
//
//  ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
//  WARRANTY; without even the implied warranty of MERCHANTABILITY or
//  FITNESS FOR A PARTICULAR PURPOSE.
//
//  See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
//  for more details.
//
/////////////////////////////////////////////////////////////////////////////////

#include "RiaApplication.h"
#include "RiaColorTables.h"
#include "RiaFractureDefines.h"

#include "RigCellGeometryTools.h"
#include "RigFractureCell.h"
#include "RigFractureGrid.h"
#include "RigHexIntersectionTools.h"
#include "RigMainGrid.h"
#include "RigWellPath.h"

#include "RimCase.h"
#include "RimEclipseCase.h"
#include "RimEclipseView.h"
#include "RimEllipseFractureTemplate.h"
#include "RimFracture.h"
#include "RimFractureContainment.h"
#include "RimFractureContainmentTools.h"
#include "RimFractureTemplate.h"
#include "RimRegularLegendConfig.h"
#include "RimSimWellInView.h"
#include "RimStimPlanColors.h"
#include "RimStimPlanFractureTemplate.h"
#include "RimWellPath.h"
#include "RimWellPathCollection.h"

#include "RivFaultGeometryGenerator.h"
#include "RivObjectSourceInfo.h"
#include "RivPartPriority.h"
#include "RivPipeGeometryGenerator.h"
#include "RivWellFracturePartMgr.h"

#include "cafDisplayCoordTransform.h"
#include "cafEffectGenerator.h"

#include "cvfAssert.h"
#include "cvfDrawableGeo.h"
#include "cvfGeometryTools.h"
#include "cvfModelBasicList.h"
#include "cvfPart.h"
#include "cvfPrimitiveSet.h"
#include "cvfPrimitiveSetDirect.h"
#include "cvfPrimitiveSetIndexedUInt.h"
#include "cvfRenderStateDepth.h"
#include "cvfScalarMapperContinuousLinear.h"
#include "cvfTransform.h"

#include <cmath>

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivWellFracturePartMgr::RivWellFracturePartMgr(RimFracture* fracture)
    : m_rimFracture(fracture)
{
}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivWellFracturePartMgr::~RivWellFracturePartMgr() {}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivWellFracturePartMgr::appendGeometryPartsToModel(cvf::ModelBasicList* model, const RimEclipseView& eclView)
{
    if (!m_rimFracture->isChecked() || !eclView.fractureColors()->isChecked()) return;

    if (!m_rimFracture->fractureTemplate()) return;

    m_visibleFracturePolygons.clear();

    double characteristicCellSize = eclView.ownerCase()->characteristicCellSize();

    cvf::Collection<cvf::Part>   parts;
    RimStimPlanFractureTemplate* stimPlanFracTemplate =
        dynamic_cast<RimStimPlanFractureTemplate*>(m_rimFracture->fractureTemplate());

    if (stimPlanFracTemplate)
    {
        if (eclView.fractureColors()->stimPlanResultColorType() == RimStimPlanColors::SINGLE_ELEMENT_COLOR)
        {
            auto part = createStimPlanElementColorSurfacePart(eclView);
            if (part.notNull()) parts.push_back(part.p());
        }
        else
        {
            auto part = createStimPlanColorInterpolatedSurfacePart(eclView);
            if (part.notNull()) parts.push_back(part.p());
        }

        if (eclView.fractureColors()->showStimPlanMesh())
        {
            auto part = createStimPlanMeshPart(eclView);
            if (part.notNull()) parts.push_back(part.p());
        }
    }
    else
    {
        auto part = createEllipseSurfacePart(eclView);
        if (part.notNull()) parts.push_back(part.p());
    }

    double distanceToCenterLine = 1.0;
    {
        RimWellPathCollection* wellPathColl = nullptr;
        m_rimFracture->firstAncestorOrThisOfType(wellPathColl);
        if (wellPathColl)
        {
            distanceToCenterLine = wellPathColl->wellPathRadiusScaleFactor() * characteristicCellSize;
        }

        RimSimWellInView* simWell = nullptr;
        m_rimFracture->firstAncestorOrThisOfType(simWell);
        if (simWell)
        {
            distanceToCenterLine = simWell->pipeRadius();
        }
    }

    // Make sure the distance is slightly smaller than the pipe radius to make the pipe is visible through the fracture
    distanceToCenterLine *= 0.1;

    if (distanceToCenterLine < 0.03)
    {
        distanceToCenterLine = 0.03;
    }

    auto fractureMatrix = m_rimFracture->transformMatrix();

    if (m_rimFracture->fractureTemplate() &&
        m_rimFracture->fractureTemplate()->orientationType() == RimFractureTemplate::ALONG_WELL_PATH)
    {
        cvf::Vec3d partTranslation = distanceToCenterLine * cvf::Vec3d(fractureMatrix.col(2));

        for (auto& part : parts)
        {
            RivWellFracturePartMgr::addPartAtPositiveAndNegativeTranslation(model, part.p(), partTranslation);
        }
    }
    else
    {
        for (auto& part : parts)
        {
            model->addPart(part.p());
        }
    }

    if (m_rimFracture->fractureTemplate())
    {
        // Position the containment mask outside the fracture parts
        // Always duplicate the containment mask parts

        {
            auto maskOfFractureAreasOutsideGrid = createMaskOfFractureOutsideGrid(eclView);
            if (maskOfFractureAreasOutsideGrid.notNull())
            {
                double scaleFactor = 0.03;
                if (m_rimFracture->fractureTemplate()->orientationType() == RimFractureTemplate::ALONG_WELL_PATH)
                {
                    scaleFactor = 2 * distanceToCenterLine;
                }

                cvf::Vec3d partTranslation = scaleFactor * cvf::Vec3d(fractureMatrix.col(2));

                RivWellFracturePartMgr::addPartAtPositiveAndNegativeTranslation(
                    model, maskOfFractureAreasOutsideGrid.p(), partTranslation);
            }
        }

        if (m_rimFracture->fractureTemplate()->fractureContainment()->isEnabled())
        {
            // Position the containment mask outside the fracture parts
            // Always duplicate the containment mask parts

            auto containmentMask = createContainmentMaskPart(eclView);
            if (containmentMask.notNull())
            {
                double scaleFactor = 0.03;
                if (m_rimFracture->fractureTemplate() &&
                    m_rimFracture->fractureTemplate()->orientationType() == RimFractureTemplate::ALONG_WELL_PATH)
                {
                    scaleFactor = 2 * distanceToCenterLine;
                }

                cvf::Vec3d partTranslation = scaleFactor * cvf::Vec3d(fractureMatrix.col(2));

                RivWellFracturePartMgr::addPartAtPositiveAndNegativeTranslation(model, containmentMask.p(), partTranslation);
            }
        }
    }

    appendFracturePerforationLengthParts(eclView, model);
}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const QString RivWellFracturePartMgr::resultInfoText(const RimEclipseView& activeView, cvf::Vec3d domainIntersectionPoint) const
{
    QString text;

    if (m_rimFracture.isNull()) return text;

    auto* ellipseFractureTemplate = dynamic_cast<RimEllipseFractureTemplate*>(m_rimFracture->fractureTemplate());
    auto* stimPlanTemplate        = dynamic_cast<RimStimPlanFractureTemplate*>(m_rimFracture->fractureTemplate());

    if (ellipseFractureTemplate)
    {
        text.append("Result value: CONDUCTIVITY ");
        text.append(QString::number(ellipseFractureTemplate->conductivity()) + "\n");
    }
    else if (stimPlanTemplate)
    {
        const RigFractureCell* cell = getFractureCellAtDomainCoord(domainIntersectionPoint);
        if (cell)
        {
            QString resultNameFromColors = activeView.fractureColors()->uiResultName();
            QString resultUnitFromColors = activeView.fractureColors()->unit();

            double resultValue = stimPlanTemplate->resultValueAtIJ(
                resultNameFromColors, resultUnitFromColors, stimPlanTemplate->activeTimeStepIndex(), cell->getI(), cell->getJ());

            QString resultValueText = QString("%1").arg(resultValue);

            QString iText = QString::number(cell->getI());
            QString jText = QString::number(cell->getJ());

            RimStimPlanColors* stimPlanColors = activeView.fractureColors();
            if (stimPlanColors)
            {
                // Conductivity
                text.append("Result value: ");

                QString resultName = stimPlanTemplate->mapUiResultNameToFileResultName(stimPlanColors->uiResultName());
                text.append(resultName + " ");
                text.append(resultValueText + "\n");
            }

            // Cell index
            text.append("Cell Index: ");
            text.append(iText + ", " + jText + "\n");
        }
    }

    return text;
}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigFractureCell* RivWellFracturePartMgr::getFractureCellAtDomainCoord(cvf::Vec3d domainCoord) const
{
    if (!m_rimFracture) return nullptr;

    cvf::Mat4d toFractureXf  = m_rimFracture->transformMatrix().getInverted();
    cvf::Vec3d fractureCoord = domainCoord.getTransformedPoint(toFractureXf);

    auto* stimPlanTempl = dynamic_cast<RimStimPlanFractureTemplate*>(m_rimFracture->fractureTemplate());
    if (!stimPlanTempl) return nullptr;

    const RigFractureGrid*              grid  = stimPlanTempl->fractureGrid();
    size_t                              cellI = cvf::UNDEFINED_SIZE_T;
    size_t                              cellJ = cvf::UNDEFINED_SIZE_T;
    const std::vector<RigFractureCell>& cells = grid->fractureCells();

    for (size_t i = 0; i < grid->iCellCount(); i++)
    {
        const RigFractureCell&  cell    = cells[i * grid->jCellCount()];
        std::vector<cvf::Vec3d> polygon = cell.getPolygon();
        double                  xmin    = polygon[0].x();
        double                  xmax    = polygon[2].x();
        if (fractureCoord.x() >= xmin && fractureCoord.x() <= xmax)
        {
            cellI = cell.getI();
            break;
        }
    }

    for (size_t j = 0; j < grid->jCellCount(); j++)
    {
        const RigFractureCell&  cell    = cells[j];
        std::vector<cvf::Vec3d> polygon = cell.getPolygon();
        double                  ymin    = polygon[2].y();
        double                  ymax    = polygon[0].y();
        if (fractureCoord.y() >= ymin && fractureCoord.y() <= ymax)
        {
            cellJ = cell.getJ();
            break;
        }
    }

    if (cellI != cvf::UNDEFINED_SIZE_T && cellJ != cvf::UNDEFINED_SIZE_T)
    {
        return &grid->cellFromIndex(grid->getGlobalIndexFromIJ(cellI, cellJ));
    }
    return nullptr;
}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createEllipseSurfacePart(const RimEclipseView& activeView)
{
    auto displayCoordTransform = activeView.displayCoordTransform();
    if (displayCoordTransform.isNull()) return nullptr;

    if (m_rimFracture)
    {
        std::vector<cvf::uint>  triangleIndices;
        std::vector<cvf::Vec3f> nodeDisplayCoords;

        {
            std::vector<cvf::Vec3f> nodeCoords;
            m_rimFracture->fractureTemplate()->fractureTriangleGeometry(&nodeCoords, &triangleIndices);

            cvf::Mat4d fractureXf = m_rimFracture->transformMatrix();
            nodeDisplayCoords     = transformToFractureDisplayCoords(nodeCoords, fractureXf, *displayCoordTransform);
        }

        if (triangleIndices.empty() || nodeDisplayCoords.empty())
        {
            return nullptr;
        }

        cvf::ref<cvf::DrawableGeo> geo = buildDrawableGeoFromTriangles(triangleIndices, nodeDisplayCoords);
        CVF_ASSERT(geo.notNull());

        cvf::ref<cvf::Part> surfacePart = new cvf::Part(0, "FractureSurfacePart_ellipse");
        surfacePart->setDrawable(geo.p());
        surfacePart->setSourceInfo(new RivObjectSourceInfo(m_rimFracture));

        cvf::Color4f fractureColor = cvf::Color4f(activeView.fractureColors()->defaultColor());

        RimRegularLegendConfig* legendConfig = nullptr;
        if (activeView.fractureColors() && activeView.fractureColors()->isChecked())
        {
            legendConfig = activeView.fractureColors()->activeLegend();
        }

        if (legendConfig && legendConfig->scalarMapper())
        {
            cvf::Color3ub resultColor = cvf::Color3ub(RiaColorTables::undefinedCellColor());

            if (activeView.fractureColors()->uiResultName() == RiaDefines::conductivityResultName())
            {
                RimEllipseFractureTemplate* ellipseFractureTemplate =
                    dynamic_cast<RimEllipseFractureTemplate*>(m_rimFracture->fractureTemplate());
                if (ellipseFractureTemplate)
                {
                    double conductivity = ellipseFractureTemplate->conductivity();
                    resultColor         = legendConfig->scalarMapper()->mapToColor(conductivity);
                }
            }

            fractureColor.set(cvf::Color3f::fromByteColor(resultColor.r(), resultColor.g(), resultColor.b()));
        }

        caf::SurfaceEffectGenerator surfaceGen(fractureColor, caf::PO_1);
        cvf::ref<cvf::Effect>       eff = surfaceGen.generateCachedEffect();
        surfacePart->setEffect(eff.p());

        return surfacePart;
    }

    return nullptr;
}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createStimPlanColorInterpolatedSurfacePart(const RimEclipseView& activeView)
{
    CVF_ASSERT(m_rimFracture);
    RimStimPlanFractureTemplate* stimPlanFracTemplate =
        dynamic_cast<RimStimPlanFractureTemplate*>(m_rimFracture->fractureTemplate());
    CVF_ASSERT(stimPlanFracTemplate);

    auto displayCoordTransform = activeView.displayCoordTransform();
    if (displayCoordTransform.isNull()) return nullptr;

    // Note that the filtering and result mapping code below couples closely to the triangulation and vertex layout returned by
    // triangleGeometry() If this ever changes, the entire code must be revisited
    std::vector<cvf::uint>  triangleIndices;
    std::vector<cvf::Vec3f> nodeDisplayCoords;
    {
        std::vector<cvf::Vec3f> nodeCoords;
        stimPlanFracTemplate->fractureTriangleGeometry(&nodeCoords, &triangleIndices);

        if (triangleIndices.empty() || nodeCoords.empty())
        {
            return nullptr;
        }

        cvf::Mat4d fractureXf = m_rimFracture->transformMatrix();
        nodeDisplayCoords     = transformToFractureDisplayCoords(nodeCoords, fractureXf, *displayCoordTransform);
    }

    RimRegularLegendConfig* legendConfig = nullptr;
    if (activeView.fractureColors() && activeView.fractureColors()->isChecked())
    {
        legendConfig = activeView.fractureColors()->activeLegend();
    }

    // Show selected result on the surface geometry and filter out triangles that have result values near 0
    if (legendConfig)
    {
        // Construct array with per node result values that correspond to the node coordinates of the triangle mesh
        // Since some time steps don't have result vales, we initialize the array to well known values before populating it
        std::vector<double> perNodeResultValues(nodeDisplayCoords.size(), HUGE_VAL);
        {
            size_t idx = 0;

            const std::vector<std::vector<double>> dataToPlot =
                stimPlanFracTemplate->resultValues(activeView.fractureColors()->uiResultName(),
                                                   activeView.fractureColors()->unit(),
                                                   stimPlanFracTemplate->activeTimeStepIndex());
            for (const std::vector<double>& dataAtY : dataToPlot)
            {
                for (double val : dataAtY)
                {
                    perNodeResultValues[idx++] = val;
                }
            }
        }
        CVF_ASSERT(perNodeResultValues.size() == nodeDisplayCoords.size());

        std::vector<cvf::uint> triIndicesToInclude;
        for (size_t i = 0; i < triangleIndices.size(); i += 6)
        {
            // Include all triangles where at least one of the vertices in the triangle pair has a value above threshold
            bool includeThisTrianglePair = false;
            for (size_t j = 0; j < 6; j++)
            {
                if (perNodeResultValues[triangleIndices[i + j]] > 1e-7)
                {
                    includeThisTrianglePair = true;
                }
            }

            if (includeThisTrianglePair)
            {
                for (size_t j = 0; j < 6; j++)
                {
                    triIndicesToInclude.push_back(triangleIndices[i + j]);
                }
            }
        }

        if (triIndicesToInclude.empty())
        {
            return nullptr;
        }

        cvf::ref<cvf::DrawableGeo> geo          = buildDrawableGeoFromTriangles(triIndicesToInclude, nodeDisplayCoords);
        const cvf::ScalarMapper*   scalarMapper = legendConfig->scalarMapper();
        CVF_ASSERT(scalarMapper);

        cvf::ref<cvf::Vec2fArray> textureCoords = new cvf::Vec2fArray(nodeDisplayCoords.size());
        textureCoords->setAll(cvf::Vec2f(0.5f, 1.0f));
        for (size_t i = 0; i < perNodeResultValues.size(); i++)
        {
            const double val = perNodeResultValues[i];
            if (val < HUGE_VAL && val == val)
            {
                textureCoords->set(i, scalarMapper->mapToTextureCoord(val));
            }
        }
        geo->setTextureCoordArray(textureCoords.p());

        cvf::ref<cvf::Part> surfacePart =
            createScalarMapperPart(geo.p(), scalarMapper, m_rimFracture, activeView.isLightingDisabled());

        return surfacePart;
    }
    else
    {
        // No result is mapped, show the entire StimPlan surface with default color

        return createSingleColorSurfacePart(triangleIndices, nodeDisplayCoords, activeView.fractureColors()->defaultColor());
    }
}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createSingleColorSurfacePart(const std::vector<cvf::uint>&  triangleIndices,
                                                                         const std::vector<cvf::Vec3f>& nodeCoords,
                                                                         const cvf::Color3f&            color)
{
    cvf::ref<cvf::DrawableGeo> geo = buildDrawableGeoFromTriangles(triangleIndices, nodeCoords);

    cvf::ref<cvf::Part> surfacePart = new cvf::Part(0, "FractureSurfacePart_stimPlan");
    surfacePart->setDrawable(geo.p());
    surfacePart->setPriority(RivPartPriority::PartType::BaseLevel);
    surfacePart->setSourceInfo(new RivObjectSourceInfo(m_rimFracture));

    cvf::Color4f                fractureColor = cvf::Color4f(color);
    caf::SurfaceEffectGenerator surfaceGen(fractureColor, caf::PO_1);
    cvf::ref<cvf::Effect>       eff = surfaceGen.generateCachedEffect();
    surfacePart->setEffect(eff.p());

    return surfacePart;
}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createStimPlanElementColorSurfacePart(const RimEclipseView& activeView)
{
    CVF_ASSERT(m_rimFracture);
    RimStimPlanFractureTemplate* stimPlanFracTemplate =
        dynamic_cast<RimStimPlanFractureTemplate*>(m_rimFracture->fractureTemplate());
    CVF_ASSERT(stimPlanFracTemplate);

    if (!stimPlanFracTemplate->fractureGrid()) return nullptr;

    auto displayCoordTransform = activeView.displayCoordTransform();
    if (displayCoordTransform.isNull()) return nullptr;

    std::vector<cvf::Vec3f>   stimPlanMeshVertices;
    cvf::ref<cvf::Vec2fArray> textureCoords = new cvf::Vec2fArray;
    const cvf::ScalarMapper*  scalarMapper  = nullptr;

    {
        std::vector<RigFractureCell> stimPlanCells = stimPlanFracTemplate->fractureGrid()->fractureCells();

        RimRegularLegendConfig* legendConfig = nullptr;
        if (activeView.fractureColors() && activeView.fractureColors()->isChecked() &&
            activeView.fractureColors()->activeLegend())
        {
            legendConfig = activeView.fractureColors()->activeLegend();

            scalarMapper = legendConfig->scalarMapper();

            QString resultNameFromColors = activeView.fractureColors()->uiResultName();
            QString resultUnitFromColors = activeView.fractureColors()->unit();

            std::vector<double> prCellResults = stimPlanFracTemplate->fractureGridResults(
                resultNameFromColors, resultUnitFromColors, stimPlanFracTemplate->activeTimeStepIndex());

            textureCoords->reserve(prCellResults.size() * 4);

            for (size_t cIdx = 0; cIdx < stimPlanCells.size(); ++cIdx)
            {
                if (prCellResults[cIdx] > 1e-7)
                {
                    const RigFractureCell&  stimPlanCell        = stimPlanCells[cIdx];
                    std::vector<cvf::Vec3d> stimPlanCellPolygon = stimPlanCell.getPolygon();
                    for (const cvf::Vec3d& cellCorner : stimPlanCellPolygon)
                    {
                        stimPlanMeshVertices.push_back(static_cast<cvf::Vec3f>(cellCorner));
                        textureCoords->add(scalarMapper->mapToTextureCoord(prCellResults[cIdx]));
                    }
                }
            }

            textureCoords->squeeze();
        }
        else
        {
            for (const auto& stimPlanCell : stimPlanCells)
            {
                for (const auto& cellCorner : stimPlanCell.getPolygon())
                {
                    stimPlanMeshVertices.push_back(static_cast<cvf::Vec3f>(cellCorner));
                }
            }
        }
    }

    if (stimPlanMeshVertices.empty())
    {
        return nullptr;
    }

    cvf::Mat4d              fractureXf = m_rimFracture->transformMatrix();
    std::vector<cvf::Vec3f> nodeDisplayCoords =
        transformToFractureDisplayCoords(stimPlanMeshVertices, fractureXf, *displayCoordTransform);

    std::vector<cvf::uint> triIndicesToInclude;

    size_t cellCount = stimPlanMeshVertices.size() / 4;
    for (cvf::uint i = 0; i < cellCount; i++)
    {
        triIndicesToInclude.push_back(i * 4 + 0);
        triIndicesToInclude.push_back(i * 4 + 1);
        triIndicesToInclude.push_back(i * 4 + 2);

        triIndicesToInclude.push_back(i * 4 + 0);
        triIndicesToInclude.push_back(i * 4 + 2);
        triIndicesToInclude.push_back(i * 4 + 3);
    }

    // Show selected result on the surface geometry and filter out triangles that have result values near 0
    if (scalarMapper)
    {
        if (triIndicesToInclude.empty())
        {
            return nullptr;
        }

        cvf::ref<cvf::DrawableGeo> geo = buildDrawableGeoFromTriangles(triIndicesToInclude, nodeDisplayCoords);
        geo->setTextureCoordArray(textureCoords.p());

        cvf::ref<cvf::Part> surfacePart =
            createScalarMapperPart(geo.p(), scalarMapper, m_rimFracture, activeView.isLightingDisabled());

        return surfacePart;
    }
    else
    {
        // No result is mapped, show the entire StimPlan surface with default color

        return createSingleColorSurfacePart(triIndicesToInclude, nodeDisplayCoords, activeView.fractureColors()->defaultColor());
    }
}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createContainmentMaskPart(const RimEclipseView& activeView)
{
    std::vector<cvf::Vec3d> borderPolygonLocalCS = fractureBorderPolygon();
    cvf::Mat4d              frMx                 = m_rimFracture->transformMatrix();

    cvf::BoundingBox        frBBox;
    std::vector<cvf::Vec3d> borderPolygonLocalCsd;
    for (const auto& pv : borderPolygonLocalCS)
    {
        cvf::Vec3d pvd(pv);
        borderPolygonLocalCsd.push_back(pvd);
        pvd.transformPoint(frMx);
        frBBox.add(pvd);
    }

    std::vector<size_t> cellCandidates;
    activeView.mainGrid()->findIntersectingCells(frBBox, &cellCandidates);

    auto displCoordTrans = activeView.displayCoordTransform();

    std::vector<cvf::Vec3f> maskTriangles;

    RimEclipseCase* eclipseCase = nullptr;
    activeView.firstAncestorOrThisOfType(eclipseCase);
    auto reservoirCellIndicesOpenForFlow = RimFractureContainmentTools::reservoirCellIndicesOpenForFlow(eclipseCase, m_rimFracture);

    for (size_t resCellIdx : cellCandidates)
    {
        if (!m_rimFracture->isEclipseCellOpenForFlow(activeView.mainGrid(), reservoirCellIndicesOpenForFlow, resCellIdx))
        {
            // Calculate Eclipse cell intersection with fracture plane

            std::array<cvf::Vec3d, 8> corners;
            activeView.mainGrid()->cellCornerVertices(resCellIdx, corners.data());

            std::vector<std::vector<cvf::Vec3d>> eclCellPolygons;
            bool hasIntersection = RigHexIntersectionTools::planeHexIntersectionPolygons(corners, frMx, eclCellPolygons);

            if (!hasIntersection || eclCellPolygons.empty()) continue;

            // Transform eclCell - plane intersection onto fracture

            cvf::Mat4d invertedTransformMatrix = frMx.getInverted();
            for (std::vector<cvf::Vec3d>& eclCellPolygon : eclCellPolygons)
            {
                for (cvf::Vec3d& v : eclCellPolygon)
                {
                    v.transformPoint(invertedTransformMatrix);
                }
            }

            cvf::Vec3d fractureNormal = cvf::Vec3d(frMx.col(2));
            for (const std::vector<cvf::Vec3d>& eclCellPolygon : eclCellPolygons)
            {
                // Clip Eclipse cell polygon with fracture border

                std::vector<std::vector<cvf::Vec3d>> clippedPolygons =
                    RigCellGeometryTools::intersectPolygons(eclCellPolygon, borderPolygonLocalCsd);
                for (auto& clippedPolygon : clippedPolygons)
                {
                    for (auto& v : clippedPolygon)
                    {
                        v.transformPoint(frMx);
                    }
                }

                // Create triangles from the clipped polygons

                for (auto& clippedPolygon : clippedPolygons)
                {
                    cvf::EarClipTesselator tess;
                    tess.setNormal(fractureNormal);
                    cvf::Vec3dArray cvfNodes(clippedPolygon);
                    tess.setGlobalNodeArray(cvfNodes);
                    std::vector<size_t> polyIndexes;
                    for (size_t idx = 0; idx < clippedPolygon.size(); ++idx)
                        polyIndexes.push_back(idx);
                    tess.setPolygonIndices(polyIndexes);

                    std::vector<size_t> triangleIndices;
                    tess.calculateTriangles(&triangleIndices);

                    for (size_t idx : triangleIndices)
                    {
                        maskTriangles.push_back(cvf::Vec3f(displCoordTrans->transformToDisplayCoord(clippedPolygon[idx])));
                    }
                }
            }
        }
    }

    if (maskTriangles.size() >= 3)
    {
        cvf::ref<cvf::DrawableGeo> maskTriangleGeo = new cvf::DrawableGeo;
        maskTriangleGeo->setVertexArray(new cvf::Vec3fArray(maskTriangles));

        cvf::ref<cvf::PrimitiveSetDirect> primitives = new cvf::PrimitiveSetDirect(cvf::PT_TRIANGLES);
        primitives->setIndexCount(maskTriangles.size());
        maskTriangleGeo->addPrimitiveSet(primitives.p());
        maskTriangleGeo->computeNormals();

        cvf::ref<cvf::Part> containmentMaskPart = new cvf::Part(0, "FractureContainmentMaskPart");
        containmentMaskPart->setDrawable(maskTriangleGeo.p());
        containmentMaskPart->setSourceInfo(new RivObjectSourceInfo(m_rimFracture));

        cvf::Color4f maskColor = cvf::Color4f(cvf::Color3f(cvf::Color3::GRAY));

        caf::SurfaceEffectGenerator surfaceGen(maskColor, caf::PO_NONE);
        cvf::ref<cvf::Effect>       eff = surfaceGen.generateCachedEffect();
        containmentMaskPart->setEffect(eff.p());

        return containmentMaskPart;
    }

    return nullptr;
}

//--------------------------------------------------------------------------------------------------
/// Create mask for the parts outside the grid cells of the reservoir
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createMaskOfFractureOutsideGrid(const RimEclipseView& activeView)
{
    cvf::Mat4d frMx = m_rimFracture->transformMatrix();

    std::vector<cvf::Vec3f> maskTriangles;

    auto displCoordTrans = activeView.displayCoordTransform();

    for (const auto& visibleFracturePolygon : m_visibleFracturePolygons)
    {
        std::vector<cvf::Vec3d> borderOfFractureCellPolygonLocalCsd;
        cvf::BoundingBox        frBBox;

        for (const auto& pv : visibleFracturePolygon)
        {
            cvf::Vec3d pvd(pv);
            borderOfFractureCellPolygonLocalCsd.push_back(pvd);
            pvd.transformPoint(frMx);
            frBBox.add(pvd);
        }

        std::vector<std::vector<cvf::Vec3d>> clippedPolygons;

        std::vector<size_t> cellCandidates;
        activeView.mainGrid()->findIntersectingCells(frBBox, &cellCandidates);
        if (cellCandidates.empty())
        {
            clippedPolygons.push_back(borderOfFractureCellPolygonLocalCsd);
        }
        else
        {
            // Check if fracture polygon is fully inside the grid

            bool allPointsInsideGrid = true;
            for (const auto& v : borderOfFractureCellPolygonLocalCsd)
            {
                auto         pointInDomainCoords = v.getTransformedPoint(frMx);
                bool         pointInsideGrid     = false;
                RigMainGrid* mainGrid            = activeView.mainGrid();

                std::array<cvf::Vec3d, 8> corners;
                for (size_t cellIndex : cellCandidates)
                {
                    mainGrid->cellCornerVertices(cellIndex, corners.data());

                    if (RigHexIntersectionTools::isPointInCell(pointInDomainCoords, corners.data()))
                    {
                        pointInsideGrid = true;
                        break;
                    }
                }

                if (!pointInsideGrid)
                {
                    allPointsInsideGrid = false;
                    break;
                }
            }

            if (!allPointsInsideGrid)
            {
                std::vector<std::vector<cvf::Vec3d>> allEclCellPolygons;
                for (size_t resCellIdx : cellCandidates)
                {
                    // Calculate Eclipse cell intersection with fracture plane

                    std::array<cvf::Vec3d, 8> corners;
                    activeView.mainGrid()->cellCornerVertices(resCellIdx, corners.data());

                    std::vector<std::vector<cvf::Vec3d>> eclCellPolygons;
                    bool hasIntersection = RigHexIntersectionTools::planeHexIntersectionPolygons(corners, frMx, eclCellPolygons);

                    if (!hasIntersection || eclCellPolygons.empty()) continue;

                    // Transform eclCell - plane intersection onto fracture

                    cvf::Mat4d invertedTransformMatrix = frMx.getInverted();
                    for (std::vector<cvf::Vec3d>& eclCellPolygon : eclCellPolygons)
                    {
                        for (cvf::Vec3d& v : eclCellPolygon)
                        {
                            v.transformPoint(invertedTransformMatrix);
                        }

                        allEclCellPolygons.push_back(eclCellPolygon);
                    }
                }

                {
                    std::vector<std::vector<cvf::Vec3d>> polys =
                        RigCellGeometryTools::subtractPolygons(borderOfFractureCellPolygonLocalCsd, allEclCellPolygons);

                    for (const auto& polygon : polys)
                    {
                        clippedPolygons.push_back(polygon);
                    }
                }
            }
        }

        for (auto& clippedPolygon : clippedPolygons)
        {
            for (auto& point : clippedPolygon)
            {
                point.transformPoint(frMx);
            }
        }

        // Create triangles from the clipped polygons
        cvf::Vec3d fractureNormal = cvf::Vec3d(frMx.col(2));

        for (const auto& clippedPolygon : clippedPolygons)
        {
            cvf::EarClipTesselator tess;
            tess.setNormal(fractureNormal);
            cvf::Vec3dArray cvfNodes(clippedPolygon);
            tess.setGlobalNodeArray(cvfNodes);
            std::vector<size_t> polyIndexes;
            for (size_t idx = 0; idx < clippedPolygon.size(); ++idx)
                polyIndexes.push_back(idx);
            tess.setPolygonIndices(polyIndexes);

            std::vector<size_t> triangleIndices;
            tess.calculateTriangles(&triangleIndices);

            for (size_t idx : triangleIndices)
            {
                maskTriangles.push_back(cvf::Vec3f(displCoordTrans->transformToDisplayCoord(clippedPolygon[idx])));
            }
        }
    }

    if (maskTriangles.size() >= 3)
    {
        cvf::ref<cvf::DrawableGeo> maskTriangleGeo = new cvf::DrawableGeo;
        maskTriangleGeo->setVertexArray(new cvf::Vec3fArray(maskTriangles));

        cvf::ref<cvf::PrimitiveSetDirect> primitives = new cvf::PrimitiveSetDirect(cvf::PT_TRIANGLES);
        primitives->setIndexCount(maskTriangles.size());
        maskTriangleGeo->addPrimitiveSet(primitives.p());
        maskTriangleGeo->computeNormals();

        cvf::ref<cvf::Part> containmentMaskPart = new cvf::Part(0, "FractureContainmentMaskPart");
        containmentMaskPart->setDrawable(maskTriangleGeo.p());
        containmentMaskPart->setSourceInfo(new RivObjectSourceInfo(m_rimFracture));

        cvf::Color4f maskColor = cvf::Color4f(cvf::Color3f(cvf::Color3::GRAY));

        caf::SurfaceEffectGenerator surfaceGen(maskColor, caf::PO_NONE);
        cvf::ref<cvf::Effect>       eff = surfaceGen.generateCachedEffect();
        containmentMaskPart->setEffect(eff.p());

        return containmentMaskPart;
    }

    return nullptr;
}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivWellFracturePartMgr::appendFracturePerforationLengthParts(const RimEclipseView& activeView, cvf::ModelBasicList* model)
{
    if (!m_rimFracture->isChecked()) return;

    if (!m_rimFracture->fractureTemplate()) return;
    if (m_rimFracture->fractureTemplate()->orientationType() != RimFractureTemplate::ALONG_WELL_PATH) return;

    auto displayCoordTransform = activeView.displayCoordTransform();
    if (displayCoordTransform.isNull()) return;

    double characteristicCellSize = activeView.ownerCase()->characteristicCellSize();
    double wellPathRadius         = 1.0;

    {
        RimWellPath* rimWellPath = nullptr;
        m_rimFracture->firstAncestorOrThisOfType(rimWellPath);
        if (rimWellPath)
        {
            wellPathRadius = rimWellPath->wellPathRadius(characteristicCellSize);
        }
    }

    {
        RimSimWellInView* simWell = nullptr;
        m_rimFracture->firstAncestorOrThisOfType(simWell);
        if (simWell)
        {
            wellPathRadius = simWell->pipeRadius();
        }
    }

    std::vector<cvf::Vec3d> displayCoords;
    {
        std::vector<cvf::Vec3d> perforationLengthCoord = m_rimFracture->perforationLengthCenterLineCoords();
        for (const cvf::Vec3d& point : perforationLengthCoord)
        {
            displayCoords.push_back(displayCoordTransform->transformToDisplayCoord(point));
        }
    }

    if (!displayCoords.empty())
    {
        cvf::ref<RivObjectSourceInfo> objectSourceInfo  = new RivObjectSourceInfo(m_rimFracture);
        double                        perforationRadius = wellPathRadius * 1.2;
        cvf::Collection<cvf::Part>    parts;

        RivPipeGeometryGenerator geoGenerator;
        geoGenerator.cylinderWithCenterLineParts(
            &parts, displayCoords, RiaColorTables::perforationLengthColor(), perforationRadius);

        for (auto part : parts)
        {
            part->setSourceInfo(objectSourceInfo.p());
            model->addPart(part.p());
        }
    }
}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createStimPlanMeshPart(const RimEclipseView& activeView)
{
    if (!m_rimFracture->fractureTemplate()) return nullptr;

    RimStimPlanFractureTemplate* stimPlanFracTemplate =
        dynamic_cast<RimStimPlanFractureTemplate*>(m_rimFracture->fractureTemplate());
    if (!stimPlanFracTemplate) return nullptr;

    cvf::ref<cvf::DrawableGeo> stimPlanMeshGeo = createStimPlanMeshDrawable(stimPlanFracTemplate, activeView);
    if (stimPlanMeshGeo.notNull())
    {
        cvf::ref<cvf::Part> stimPlanMeshPart = new cvf::Part(0, "StimPlanMesh");
        stimPlanMeshPart->setDrawable(stimPlanMeshGeo.p());

        stimPlanMeshPart->updateBoundingBox();
        stimPlanMeshPart->setPriority(RivPartPriority::PartType::TransparentMeshLines);

        caf::MeshEffectGenerator lineEffGen(cvf::Color3::BLACK);
        lineEffGen.setLineWidth(1.0f);
        cvf::ref<cvf::Effect> eff = lineEffGen.generateCachedEffect();

        stimPlanMeshPart->setEffect(eff.p());

        return stimPlanMeshPart;
    }

    return nullptr;
}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> RivWellFracturePartMgr::createStimPlanMeshDrawable(RimStimPlanFractureTemplate* stimPlanFracTemplate,
                                                                              const RimEclipseView&        activeView)
{
    if (!stimPlanFracTemplate->fractureGrid()) return nullptr;

    auto displayCoordTransform = activeView.displayCoordTransform();
    if (displayCoordTransform.isNull()) return nullptr;

    std::vector<RigFractureCell> stimPlanCells = stimPlanFracTemplate->fractureGrid()->fractureCells();
    std::vector<cvf::Vec3f>      stimPlanMeshVertices;

    QString resultNameFromColors = activeView.fractureColors()->uiResultName();
    QString resultUnitFromColors = activeView.fractureColors()->unit();

    std::vector<double> prCellResults = stimPlanFracTemplate->fractureGridResults(
        resultNameFromColors, resultUnitFromColors, stimPlanFracTemplate->activeTimeStepIndex());

    m_visibleFracturePolygons.clear();
    for (size_t cIdx = 0; cIdx < stimPlanCells.size(); ++cIdx)
    {
        if (prCellResults[cIdx] > 1e-7)
        {
            const RigFractureCell&  stimPlanCell        = stimPlanCells[cIdx];
            std::vector<cvf::Vec3d> stimPlanCellPolygon = stimPlanCell.getPolygon();
            for (const cvf::Vec3d& cellCorner : stimPlanCellPolygon)
            {
                stimPlanMeshVertices.push_back(static_cast<cvf::Vec3f>(cellCorner));
            }
            m_visibleFracturePolygons.push_back(stimPlanCellPolygon);
        }
    }

    if (stimPlanMeshVertices.empty())
    {
        return nullptr;
    }

    cvf::Mat4d              fractureXf = m_rimFracture->transformMatrix();
    std::vector<cvf::Vec3f> stimPlanMeshVerticesDisplayCoords =
        transformToFractureDisplayCoords(stimPlanMeshVertices, fractureXf, *displayCoordTransform);

    cvf::Vec3fArray* stimPlanMeshVertexList;
    stimPlanMeshVertexList = new cvf::Vec3fArray;
    stimPlanMeshVertexList->assign(stimPlanMeshVerticesDisplayCoords);

    cvf::ref<cvf::DrawableGeo> stimPlanMeshGeo = new cvf::DrawableGeo;
    stimPlanMeshGeo->setVertexArray(stimPlanMeshVertexList);
    cvf::ref<cvf::UIntArray> indices = RivFaultGeometryGenerator::lineIndicesFromQuadVertexArray(stimPlanMeshVertexList);
    cvf::ref<cvf::PrimitiveSetIndexedUInt> prim = new cvf::PrimitiveSetIndexedUInt(cvf::PT_LINES);
    prim->setIndices(indices.p());

    stimPlanMeshGeo->addPrimitiveSet(prim.p());

    return stimPlanMeshGeo;
}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivWellFracturePartMgr::createScalarMapperPart(cvf::DrawableGeo*        drawableGeo,
                                                                   const cvf::ScalarMapper* scalarMapper,
                                                                   RimFracture*             fracture,
                                                                   bool                     disableLighting)
{
    cvf::ref<cvf::Part> surfacePart = new cvf::Part(0, "FractureSurfacePart_stimPlan");
    surfacePart->setDrawable(drawableGeo);
    surfacePart->setPriority(RivPartPriority::PartType::BaseLevel);
    surfacePart->setSourceInfo(new RivObjectSourceInfo(fracture));

    caf::ScalarMapperEffectGenerator effGen(scalarMapper, caf::PO_1);
    effGen.disableLighting(disableLighting);

    cvf::ref<cvf::Effect> eff = effGen.generateCachedEffect();
    surfacePart->setEffect(eff.p());

    return surfacePart;
}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> RivWellFracturePartMgr::fractureBorderPolygon()
{
    return RigCellGeometryTools::unionOfPolygons(m_visibleFracturePolygons);
}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3f>
    RivWellFracturePartMgr::transformToFractureDisplayCoords(const std::vector<cvf::Vec3f>&    coordinatesVector,
                                                             cvf::Mat4d                        m,
                                                             const caf::DisplayCoordTransform& displayCoordTransform)
{
    std::vector<cvf::Vec3f> polygonInDisplayCoords;
    polygonInDisplayCoords.reserve(coordinatesVector.size());

    for (const cvf::Vec3f& v : coordinatesVector)
    {
        cvf::Vec3d vd(v);
        vd.transformPoint(m);
        cvf::Vec3d displayCoordsDouble = displayCoordTransform.transformToDisplayCoord(vd);
        polygonInDisplayCoords.push_back(cvf::Vec3f(displayCoordsDouble));
    }

    return polygonInDisplayCoords;
}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> RivWellFracturePartMgr::buildDrawableGeoFromTriangles(const std::vector<cvf::uint>&  triangleIndices,
                                                                                 const std::vector<cvf::Vec3f>& nodeCoords)
{
    CVF_ASSERT(triangleIndices.size() > 0);
    CVF_ASSERT(nodeCoords.size() > 0);

    cvf::ref<cvf::DrawableGeo> geo = new cvf::DrawableGeo;

    cvf::ref<cvf::UIntArray>  indices  = new cvf::UIntArray(triangleIndices);
    cvf::ref<cvf::Vec3fArray> vertices = new cvf::Vec3fArray(nodeCoords);

    geo->setVertexArray(vertices.p());
    geo->addPrimitiveSet(new cvf::PrimitiveSetIndexedUInt(cvf::PT_TRIANGLES, indices.p()));
    geo->computeNormals();

    return geo;
}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Transform> RivWellFracturePartMgr::createLocalTransformFromTranslation(const cvf::Vec3d& translation)
{
    cvf::Mat4d m = cvf::Mat4d::fromTranslation(translation);

    cvf::ref<cvf::Transform> partTransform = new cvf::Transform;
    partTransform->setLocalTransform(m);

    return partTransform;
}

//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivWellFracturePartMgr::addPartAtPositiveAndNegativeTranslation(cvf::ModelBasicList* model,
                                                                     cvf::Part*           part,
                                                                     const cvf::Vec3d&    translation)
{
    {
        cvf::ref<cvf::Transform> partTransform = RivWellFracturePartMgr::createLocalTransformFromTranslation(translation);

        part->setTransform(partTransform.p());
        model->addPart(part);
    }

    {
        // Create a copy of the part to be able to assign a transformation matrix representing the translation in the opposite
        // direction

        cvf::ref<cvf::Transform> partTransform = RivWellFracturePartMgr::createLocalTransformFromTranslation(-translation);

        auto copy = part->shallowCopy();
        copy->setTransform(partTransform.p());
        model->addPart(copy.p());
    }
}