//################################################################################################## // // Custom Visualization Core library // Copyright (C) 2011-2013 Ceetron AS // // This library may be used under the terms of either the GNU General Public License or // the GNU Lesser General Public License as follows: // // GNU General Public License Usage // This library is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This library is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at <> // for more details. // // GNU Lesser General Public License Usage // This library is free software; you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation; either version 2.1 of the License, or // (at your option) any later version. // // This library is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU Lesser General Public License at <> // for more details. // //################################################################################################## #include "cvfBase.h" #include "cvfStructGrid.h" #include "cvfStructGridCutPlane.h" #include "cvfStructGridScalarDataAccess.h" #include "cvfGeometryBuilderDrawableGeo.h" #include "cvfPrimitiveSetIndexedUInt.h" #include "cvfDebugTimer.h" #include "cvfPlane.h" #include "cvfScalarMapper.h" #include "cvfEdgeKey.h" #include "cvfMeshEdgeExtractor.h" #include #include #include namespace cvf { //================================================================================================== /// /// \class cvf::StructGridCutPlane /// \ingroup StructGrid /// /// /// //================================================================================================== // Based on description and implementation from Paul Bourke: // http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/ const uint StructGridCutPlane::sm_edgeTable[256] = { 0x0 , 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c, 0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00, 0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c, 0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90, 0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c, 0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30, 0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac, 0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0, 0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c, 0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60, 0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc, 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0, 0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c, 0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950, 0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc , 0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0, 0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc, 0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0, 0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c, 0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650, 0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc, 0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0, 0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c, 0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460, 0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac, 0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0, 0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c, 0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230, 0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c, 0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190, 0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c, 0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0 }; const int StructGridCutPlane::sm_triTable[256][16] = { {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1}, {3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1}, {3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1}, {3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1}, {9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1}, {9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1}, {2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1}, {8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1}, {9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1}, {4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1}, {3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1}, {1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1}, {4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1}, {4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1}, {5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1}, {2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1}, {9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1}, {0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1}, {2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1}, {10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1}, {5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1}, {5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1}, {9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1}, {0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1}, {1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1}, {10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1}, {8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1}, {2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1}, {7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1}, {2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1}, {11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1}, {5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1}, {11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1}, {11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1}, {1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1}, {9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1}, {5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1}, {2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1}, {5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1}, {6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1}, {3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1}, {6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1}, {5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1}, {1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1}, {10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1}, {6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1}, {8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1}, {7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1}, {3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1}, {5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1}, {0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1}, {9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1}, {8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1}, {5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1}, {0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1}, {6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1}, {10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1}, {10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1}, {8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1}, {1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1}, {0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1}, {10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1}, {3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1}, {6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1}, {9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1}, {8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1}, {3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1}, {6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1}, {0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1}, {10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1}, {10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1}, {2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1}, {7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1}, {7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1}, {2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1}, {1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1}, {11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1}, {8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1}, {0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1}, {7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1}, {10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1}, {2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1}, {6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1}, {7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1}, {2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1}, {1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1}, {10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1}, {10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1}, {0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1}, {7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1}, {6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1}, {8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1}, {9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1}, {6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1}, {4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1}, {10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1}, {8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1}, {0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1}, {1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1}, {8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1}, {10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1}, {4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1}, {10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1}, {5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1}, {11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1}, {9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1}, {6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1}, {7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1}, {3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1}, {7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1}, {3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1}, {6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1}, {9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1}, {1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1}, {4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1}, {7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1}, {6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1}, {3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1}, {0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1}, {6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1}, {0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1}, {11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1}, {6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1}, {5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1}, {9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1}, {1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1}, {1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1}, {10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1}, {0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1}, {5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1}, {10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1}, {11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1}, {9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1}, {7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1}, {2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1}, {8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1}, {9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1}, {9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1}, {1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1}, {9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1}, {9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1}, {5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1}, {0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1}, {10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1}, {2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1}, {0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1}, {0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1}, {9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1}, {5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1}, {3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1}, {5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1}, {8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1}, {0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1}, {9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1}, {1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1}, {3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1}, {4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1}, {9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1}, {11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1}, {11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1}, {2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1}, {9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1}, {3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1}, {1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1}, {4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1}, {3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1}, {0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1}, {9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1}, {1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1} }; //-------------------------------------------------------------------------------------------------- /// Constructor //-------------------------------------------------------------------------------------------------- StructGridCutPlane::StructGridCutPlane(const StructGridInterface* grid) : m_grid(grid), m_mapScalarSetIndex(UNDEFINED_UINT), m_scalarMapper(NULL), m_mapNodeAveragedScalars(false), m_mustRecompute(true) { CVF_ASSERT(grid); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- StructGridCutPlane::~StructGridCutPlane() { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void StructGridCutPlane::setPlane(const Plane& plane) { m_plane = plane; m_mustRecompute = true; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void StructGridCutPlane::setMapScalar(uint scalarSetIndex, const ScalarMapper* mapper, bool nodeAveragedScalars) { CVF_ASSERT(mapper); m_mapScalarSetIndex = scalarSetIndex; m_scalarMapper = mapper; m_mapNodeAveragedScalars = nodeAveragedScalars; m_mustRecompute = true; } //-------------------------------------------------------------------------------------------------- /// Generate cut plane geometry from current configuration /// /// \return Reference to created DrawableGeo object. Returns NULL if no cut plane was generated /// /// \todo Remove duplicate nodes from returned geometry /// Current implementation is not optimized in any way /// Should set normal from plane normal instead of relying on caller to compute them //-------------------------------------------------------------------------------------------------- ref StructGridCutPlane::generateSurface(const cvf::StructGridScalarDataAccess* dataAccessObject) { if (m_mustRecompute) { computeCutPlane(dataAccessObject); m_mustRecompute = false; } size_t numVertices = m_vertices.size(); size_t numTriangles = m_triangleIndices.size()/3; if (numVertices == 0 || numTriangles == 0) { return NULL; } bool doMapScalar = false; if (m_mapScalarSetIndex != UNDEFINED_UINT && m_scalarMapper.notNull()) { CVF_ASSERT(numVertices == m_vertexScalars.size()); doMapScalar = true; } ref vertexArr = new Vec3fArray(m_vertices); ref indices = new UIntArray(m_triangleIndices); ref primSet = new PrimitiveSetIndexedUInt(PT_TRIANGLES); primSet->setIndices(indices.p()); ref geo = new cvf::DrawableGeo;; geo->setVertexArray(vertexArr.p()); geo->addPrimitiveSet(primSet.p()); if (doMapScalar) { CVF_ASSERT(numVertices == m_vertexScalars.size()); ref vertexColors = new Color3ubArray; ref textureCoords = new Vec2fArray; vertexColors->reserve(numVertices); textureCoords->reserve(numVertices); size_t i; for (i = 0; i < numVertices; i++) { Color3ub clr = m_scalarMapper->mapToColor(m_vertexScalars[i]); vertexColors->add(clr); Vec2f texCoord = m_scalarMapper->mapToTextureCoord(m_vertexScalars[i]); textureCoords->add(texCoord); } geo->setColorArray(vertexColors.p()); geo->setTextureCoordArray(textureCoords.p()); } //Trace::show("generateSurface(): Vertices:%d TriConns:%d Tris:%d", vertexArr->size(), indices->size(), indices->size()/3); return geo; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- ref StructGridCutPlane::generateMesh(const cvf::StructGridScalarDataAccess* dataAccessObject) { if (m_mustRecompute) { computeCutPlane(dataAccessObject); m_mustRecompute = false; } size_t numVertices = m_vertices.size(); size_t numLines = m_meshLineIndices.size()/2; if (numVertices == 0 || numLines == 0) { return NULL; } MeshEdgeExtractor ee; ee.addPrimitives(2, &m_meshLineIndices[0], m_meshLineIndices.size()); ref indices = ee.lineIndices(); ref primSet = new PrimitiveSetIndexedUInt(PT_LINES); primSet->setIndices(indices.p()); ref vertexArr = new Vec3fArray(m_vertices); ref geo = new cvf::DrawableGeo;; geo->setVertexArray(vertexArr.p()); geo->addPrimitiveSet(primSet.p()); //Trace::show("generateMesh(): Vertices:%d LineConns:%d Lines:%d", vertexArr->size(), indices->size(), indices->size()/2); return geo; } //-------------------------------------------------------------------------------------------------- /// Generate surface representation of the specified cut plane /// /// \note Will compute normals before returning geometry //-------------------------------------------------------------------------------------------------- void StructGridCutPlane::computeCutPlane(const cvf::StructGridScalarDataAccess* dataAccessObject) { if (!dataAccessObject) return; DebugTimer tim(""); bool doMapScalar = false; if (m_mapScalarSetIndex != UNDEFINED_UINT && m_scalarMapper.notNull()) { doMapScalar = true; } size_t cellCountI = m_grid->cellCountI(); size_t cellCountJ = m_grid->cellCountJ(); size_t cellCountK = m_grid->cellCountK(); // Clear any current data m_vertices.clear(); m_vertexScalars.clear(); m_triangleIndices.clear(); m_meshLineIndices.clear(); // The indexing conventions for vertices and // edges used in the algorithm: // edg verts // 4-------------5 *------4------* 0 0 - 1 // /| /| /| /| 1 1 - 2 // / | / | 7/ | 5/ | 2 2 - 3 // / | / | |z / 8 / 9 3 3 - 0 // 7-------------6 | | /y *------6------* | 4 4 - 5 // | | | | |/ | | | | 5 5 - 6 // | 0---------|---1 *---x | *------0--|---* 6 6 - 7 // | / | / 11 / 10 / 7 7 - 4 // | / | / | /3 | /1 8 0 - 4 // |/ |/ |/ |/ 9 1 - 5 // 3-------------2 *------2------* 10 2 - 6 // vertex indices edge indices 11 3 - 7 // size_t k; for (k = 0; k < cellCountK; k++) { size_t j; for (j = 0; j < cellCountJ; j++) { size_t i; for (i = 0; i < cellCountI; i++) { size_t cellIndex = m_grid->cellIndexFromIJK(i, j, k); Vec3d minCoord; Vec3d maxCoord; m_grid->cellMinMaxCordinates(cellIndex, &minCoord, &maxCoord); // Early reject for cells outside clipping box if (m_clippingBoundingBox.isValid()) { BoundingBox cellBB(minCoord, maxCoord); if (!m_clippingBoundingBox.intersects(cellBB)) { continue; } } // Check if plane intersects this cell and skip if it doesn't if (!isCellIntersectedByPlane(m_plane, minCoord, maxCoord)) { continue; } GridCell cell; bool isClipped = false; if (m_clippingBoundingBox.isValid()) { if (!m_clippingBoundingBox.contains(minCoord) || !m_clippingBoundingBox.contains(maxCoord)) { isClipped = true; minCoord.x() = CVF_MAX(minCoord.x(), m_clippingBoundingBox.min().x()); minCoord.y() = CVF_MAX(minCoord.y(), m_clippingBoundingBox.min().y()); minCoord.z() = CVF_MAX(minCoord.z(), m_clippingBoundingBox.min().z()); maxCoord.x() = CVF_MIN(maxCoord.x(), m_clippingBoundingBox.max().x()); maxCoord.y() = CVF_MIN(maxCoord.y(), m_clippingBoundingBox.max().y()); maxCoord.z() = CVF_MIN(maxCoord.z(), m_clippingBoundingBox.max().z()); } } cell.p[0].set(minCoord.x(), maxCoord.y(), minCoord.z()); cell.p[1].set(maxCoord.x(), maxCoord.y(), minCoord.z()); cell.p[2].set(maxCoord.x(), minCoord.y(), minCoord.z()); cell.p[3].set(minCoord.x(), minCoord.y(), minCoord.z()); cell.p[4].set(minCoord.x(), maxCoord.y(), maxCoord.z()); cell.p[5].set(maxCoord.x(), maxCoord.y(), maxCoord.z()); cell.p[6].set(maxCoord.x(), minCoord.y(), maxCoord.z()); cell.p[7].set(minCoord.x(), minCoord.y(), maxCoord.z()); // Fetch scalar values double cellScalarValue = 0; if (doMapScalar) { cellScalarValue = dataAccessObject->cellScalar(cellIndex); // If we're doing node averaging we must populate grid cell with scalar values interpolated to the grid points if (m_mapNodeAveragedScalars) { CVF_ASSERT(false); // This is not supported in this code. #if 0 // This is not supported now. This is possibly valid code for "neighbour regular grids" (Eg. Rectilinear or regular grids) // but is not general for general struct grids. So the interpolation stuff must be handled specially for each "real" grid type if (isClipped) { double scalarVal; if (dataAccessObject->pointScalar(cell.p[0], &scalarVal)) cell.s[0] = scalarVal; if (dataAccessObject->pointScalar(cell.p[1], &scalarVal)) cell.s[1] = scalarVal; if (dataAccessObject->pointScalar(cell.p[2], &scalarVal)) cell.s[2] = scalarVal; if (dataAccessObject->pointScalar(cell.p[3], &scalarVal)) cell.s[3] = scalarVal; if (dataAccessObject->pointScalar(cell.p[4], &scalarVal)) cell.s[4] = scalarVal; if (dataAccessObject->pointScalar(cell.p[5], &scalarVal)) cell.s[5] = scalarVal; if (dataAccessObject->pointScalar(cell.p[6], &scalarVal)) cell.s[6] = scalarVal; if (dataAccessObject->pointScalar(cell.p[7], &scalarVal)) cell.s[7] = scalarVal; } else { cell.s[0] = dataAccessObject->gridPointScalar(i, j + 1, k); cell.s[1] = dataAccessObject->gridPointScalar(i + 1, j + 1, k); cell.s[2] = dataAccessObject->gridPointScalar(i + 1, j, k); cell.s[3] = dataAccessObject->gridPointScalar(i, j, k); cell.s[4] = dataAccessObject->gridPointScalar(i, j + 1, k + 1); cell.s[5] = dataAccessObject->gridPointScalar(i + 1, j + 1, k + 1); cell.s[6] = dataAccessObject->gridPointScalar(i + 1, j, k + 1); cell.s[7] = dataAccessObject->gridPointScalar(i, j, k + 1); } #else cell.s[0] = HUGE_VAL; cell.s[1] = HUGE_VAL; cell.s[2] = HUGE_VAL; cell.s[3] = HUGE_VAL; cell.s[4] = HUGE_VAL; cell.s[5] = HUGE_VAL; cell.s[6] = HUGE_VAL; cell.s[7] = HUGE_VAL; #endif } } Triangles triangles; uint numTriangles = polygonise(m_plane, cell, &triangles); if (numTriangles > 0) { // Add all the referenced vertices // At the same time registering their index in the 'global' vertex list uint globalVertexIndices[12]; int iv; for (iv = 0; iv < 12; iv++) { if (triangles.usedVertices[iv]) { globalVertexIndices[iv] = static_cast(m_vertices.size()); m_vertices.push_back(Vec3f(triangles.vertices[iv])); if (doMapScalar) { if (m_mapNodeAveragedScalars) { m_vertexScalars.push_back(triangles.scalars[iv]); } else { m_vertexScalars.push_back(cellScalarValue); } } } else { globalVertexIndices[iv] = UNDEFINED_UINT; } } // Build triangles from the cell const size_t prevNumTriangleIndices = m_triangleIndices.size(); uint t; for (t = 0; t < numTriangles; t++) { m_triangleIndices.push_back(globalVertexIndices[triangles.triangleIndices[3*t]]); m_triangleIndices.push_back(globalVertexIndices[triangles.triangleIndices[3*t + 1]]); m_triangleIndices.push_back(globalVertexIndices[triangles.triangleIndices[3*t + 2]]); } // Add mesh line indices addMeshLineIndices(&m_triangleIndices[prevNumTriangleIndices], numTriangles); } } } } // Trace::show("Vertices:%d TriConns:%d Tris:%d", m_vertices.size(), m_triangleIndices.size(), m_triangleIndices.size()/3); // tim.reportTimeMS("computeCutPlane()"); } //-------------------------------------------------------------------------------------------------- /// Add mesh line indices by analyzing the triangle indices and only adding 'unique' edges //-------------------------------------------------------------------------------------------------- void StructGridCutPlane::addMeshLineIndices(const uint* triangleIndices, uint triangleCount) { std::vector edges; edges.reserve(3*triangleCount); std::vector::iterator it; uint t; for (t = 0; t < triangleCount; t++) { uint i; for (i = 0; i < 3; i++) { const uint vertexIdx1 = triangleIndices[3*t + i]; const uint vertexIdx2 = (i < 2) ? triangleIndices[3*t + i + 1] : triangleIndices[3*t]; int64 edgeKeyVal = EdgeKey(vertexIdx1, vertexIdx2).toKeyVal(); it = find(edges.begin(), edges.end(), edgeKeyVal); if (it == edges.end()) { edges.push_back(edgeKeyVal); } else { edges.erase(it); } } } for (it = edges.begin(); it != edges.end(); ++it) { EdgeKey ek = EdgeKey::fromkeyVal(*it); m_meshLineIndices.push_back(ek.index1()); m_meshLineIndices.push_back(ek.index2()); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- uint StructGridCutPlane::polygonise(const Plane& plane, const GridCell& cell, Triangles* triangles) { int cubeindex = 0; if (plane.distanceSquared(cell.p[0]) < 0) cubeindex |= 1; if (plane.distanceSquared(cell.p[1]) < 0) cubeindex |= 2; if (plane.distanceSquared(cell.p[2]) < 0) cubeindex |= 4; if (plane.distanceSquared(cell.p[3]) < 0) cubeindex |= 8; if (plane.distanceSquared(cell.p[4]) < 0) cubeindex |= 16; if (plane.distanceSquared(cell.p[5]) < 0) cubeindex |= 32; if (plane.distanceSquared(cell.p[6]) < 0) cubeindex |= 64; if (plane.distanceSquared(cell.p[7]) < 0) cubeindex |= 128; if (sm_edgeTable[cubeindex] == 0) { return 0; } // Compute vertex coordinates on the edges where we have intersections if (sm_edgeTable[cubeindex] & 1) triangles->vertices[0] = planeLineIntersection(plane, cell.p[0], cell.p[1], cell.s[0], cell.s[1], &triangles->scalars[0] ); if (sm_edgeTable[cubeindex] & 2) triangles->vertices[1] = planeLineIntersection(plane, cell.p[1], cell.p[2], cell.s[1], cell.s[2], &triangles->scalars[1] ); if (sm_edgeTable[cubeindex] & 4) triangles->vertices[2] = planeLineIntersection(plane, cell.p[2], cell.p[3], cell.s[2], cell.s[3], &triangles->scalars[2] ); if (sm_edgeTable[cubeindex] & 8) triangles->vertices[3] = planeLineIntersection(plane, cell.p[3], cell.p[0], cell.s[3], cell.s[0], &triangles->scalars[3] ); if (sm_edgeTable[cubeindex] & 16) triangles->vertices[4] = planeLineIntersection(plane, cell.p[4], cell.p[5], cell.s[4], cell.s[5], &triangles->scalars[4] ); if (sm_edgeTable[cubeindex] & 32) triangles->vertices[5] = planeLineIntersection(plane, cell.p[5], cell.p[6], cell.s[5], cell.s[6], &triangles->scalars[5] ); if (sm_edgeTable[cubeindex] & 64) triangles->vertices[6] = planeLineIntersection(plane, cell.p[6], cell.p[7], cell.s[6], cell.s[7], &triangles->scalars[6] ); if (sm_edgeTable[cubeindex] & 128) triangles->vertices[7] = planeLineIntersection(plane, cell.p[7], cell.p[4], cell.s[7], cell.s[4], &triangles->scalars[7] ); if (sm_edgeTable[cubeindex] & 256) triangles->vertices[8] = planeLineIntersection(plane, cell.p[0], cell.p[4], cell.s[0], cell.s[4], &triangles->scalars[8] ); if (sm_edgeTable[cubeindex] & 512) triangles->vertices[9] = planeLineIntersection(plane, cell.p[1], cell.p[5], cell.s[1], cell.s[5], &triangles->scalars[9] ); if (sm_edgeTable[cubeindex] & 1024) triangles->vertices[10] = planeLineIntersection(plane, cell.p[2], cell.p[6], cell.s[2], cell.s[6], &triangles->scalars[10]); if (sm_edgeTable[cubeindex] & 2048) triangles->vertices[11] = planeLineIntersection(plane, cell.p[3], cell.p[7], cell.s[3], cell.s[7], &triangles->scalars[11]); // Create the triangles memset(triangles->usedVertices, 0, sizeof(triangles->usedVertices)); const int* triConnects = sm_triTable[cubeindex]; uint n = 0; while (triConnects[n] != -1) { triangles->triangleIndices[n] = triConnects[n]; triangles->usedVertices[triConnects[n]] = true; n++; } uint numTriangles = n/3; return numTriangles; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- Vec3d StructGridCutPlane::planeLineIntersection(const Plane& plane, const Vec3d& p1, const Vec3d& p2, const double s1, const double s2, double* s) { // From http://local.wasp.uwa.edu.au/~pbourke/geometry/planeline/ // // P1 (x1,y1,z1) and P2 (x2,y2,z2) // // P = P1 + u (P2 - P1) // // A*x1 + B*y1 + C*z1 + D // u = --------------------------------- // A*(x1-x2) + B*(y1-y2) + C*(z1-z2) CVF_ASSERT(s); const Vec3d v = p2 - p1; double denominator = -(plane.A()*v.x() + plane.B()*v.y() + plane.C()*v.z()); if (denominator != 0) { double u = (plane.A()*p1.x() + plane.B()*p1.y() + plane.C()*p1.z() + plane.D())/denominator; if (u > 0.0 && u < 1.0) { *s = s1 + u*(s2 - s1); return (p1 + u*v); } else { if (u >= 1.0) { *s = s2; return p2; } else { *s = s1; return p1; } } } else { *s = s1; return p1; } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool StructGridCutPlane::isCellIntersectedByPlane(const Plane& plane, const Vec3d& cellMinCoord, const Vec3d& cellMaxCoord) { // See http://zach.in.tu-clausthal.de/teaching/cg_literatur/lighthouse3d_view_frustum_culling/index.html // Start by finding the "positive vertex" and the "negative vertex" relative to plane normal Vec3d pVertex(cellMinCoord); Vec3d nVertex(cellMaxCoord); if (plane.A() >= 0) { pVertex.x() = cellMaxCoord.x(); nVertex.x() = cellMinCoord.x(); } if (plane.B() >= 0) { pVertex.y() = cellMaxCoord.y(); nVertex.y() = cellMinCoord.y(); } if (plane.C() >= 0) { pVertex.z() = cellMaxCoord.z(); nVertex.z() = cellMinCoord.z(); } // Chek if both positive and negative vertex are on same side of plane if (plane.distanceSquared(pVertex) < 0) { if (plane.distanceSquared(nVertex) < 0) { return false; } else { return true; } } else { if (plane.distanceSquared(nVertex) >= 0) { return false; } else { return true; } } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void StructGridCutPlane::setClippingBoundingBox(const BoundingBox& boundingBox) { m_clippingBoundingBox = boundingBox; } } // namespace cvf