#include "cafHexGridIntersectionTools.h" #include "cvfPlane.h" #include #include #include namespace caf { //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- //HexGridIntersectionTools::ClipVx::ClipVx() // : vx(cvf::Vec3d::ZERO), // normDistFromEdgeVx1(HUGE_VAL), // clippedEdgeVx1Id(-1), // clippedEdgeVx2Id(-1), // isVxIdsNative(true), // derivedVxLevel(-1) //{ //} // //-------------------------------------------------------------------------------------------------- /// Find intersection between a line segment and a plane /// /// \param a Start of line segment /// \param b End of line segment /// \param intersection Returns intersection point along the infinite line defined by a-b /// \param normalizedDistFromA Returns the normalized (0..1) position from a to b of the intersection point. /// Will return values along the infinite line defined by the a-b direcion, /// and HUGE_VAL if plane and line are parallel. /// \param epsilon Tolerance margin for accepting the position being within (0..1) /// /// \return True if line segment intersects the plane //-------------------------------------------------------------------------------------------------- bool HexGridIntersectionTools::planeLineIntersect(const cvf::Plane& plane, const cvf::Vec3d& a, const cvf::Vec3d& b, cvf::Vec3d* intersection, double* normalizedDistFromA, double epsilon) { // From Real-Time Collision Detection by Christer Eriscon, published by Morgen Kaufmann Publishers, (c) 2005 Elsevier Inc cvf::Vec3d ab = b - a; cvf::Vec3d normal = plane.normal(); double normDotAB = normal * ab; if (normDotAB == 0) { (*normalizedDistFromA) = HUGE_VAL; return false; } double interpolationParameter = (-plane.D() - (normal * a)) / normDotAB; (*intersection) = a + interpolationParameter * ab; (*normalizedDistFromA) = interpolationParameter; return (interpolationParameter >= -epsilon && interpolationParameter <= 1.0 + epsilon); } //-------------------------------------------------------------------------------------------------- /// Returns whether the triangle was hit by the plane. /// isMostVxesOnPositiveSide returns true if all or two of the vxes is on the positive side of the plane. /// newVx1/2.vx1ClippedEdge returns the index of the single vx that is alone on one side of the plane. /// Going newVx1 to newVx2 will make the top triangle same winding as the original triangle, /// and the quad opposite winding // The permutations except for the trivial cases where all vertices are in front or behind plane: // // // 1. Single vertex on positive side of plane => isMostVxesOnPositiveSide = false // // +\ /\3 /\3 /+ /\3 . // \ / \ / \ / + / \ + . // \2 \ / \/1 __1/____\2__ . // / \ \ / /\ / \ . // 1/___\1___\2 1/____2/__\2 1/________\2 . // +\ /+ // // // 2. Two vertices vertex on positive side of plane => isMostVxesOnPositiveSide = true // // \+ /\3 /\3 +/ /\3 . // \ / \ / \ / / \ . // \2 \ / \/1 __1/____\2__ . // / \ \ / /\ + / \ + . // 1/___\1___\2 1/____2/__\2 1/________\2 . // \+ +/ // // 3. The special cases of touching one vertex, either exactly or "close enough" // in finite precision. These occur for both 2. and 3 and in any rotation. // // a) Should not be counted b) May need a tolerance margin to intersect // as intersecting: both 1->3 and 2->3 as it is theoretically required to: // 3 // \ /\ /|\ // \ / \ / | \ // \ / \ / | \ // \ / \ / | \ // \/________\ /____|____\ // \ 1 | 2 //-------------------------------------------------------------------------------------------------- bool HexGridIntersectionTools::planeTriangleIntersection(const cvf::Plane& plane, const cvf::Vec3d& p1, size_t p1Id, const cvf::Vec3d& p2, size_t p2Id, const cvf::Vec3d& p3, size_t p3Id, ClipVx* newVx1, ClipVx* newVx2, bool * isMostVxesOnPositiveSide) { const double nonDimensionalTolerance = 1.0e-8; double sqrSignedDistances[3]; sqrSignedDistances[0] = plane.distanceSquared(p1); sqrSignedDistances[1] = plane.distanceSquared(p2); sqrSignedDistances[2] = plane.distanceSquared(p3); double maxSqrAbsDistance = std::max(std::abs(sqrSignedDistances[0]), std::max(std::abs(sqrSignedDistances[1]), std::abs(sqrSignedDistances[2]))); const double sqrDistanceTolerance = nonDimensionalTolerance * maxSqrAbsDistance; int onPosSide[3]; onPosSide[0] = sqrSignedDistances[0] >= 0; onPosSide[1] = sqrSignedDistances[1] >= 0; onPosSide[2] = sqrSignedDistances[2] >= 0; const int numPositiveVertices = onPosSide[0] + onPosSide[1] + onPosSide[2]; // The entire triangle is on the negative side // Clip everything if (numPositiveVertices == 0) { (*isMostVxesOnPositiveSide) = false; return false; } // All triangle vertices are on the positive side if (numPositiveVertices == 3) { (*isMostVxesOnPositiveSide) = true; return false; } (*isMostVxesOnPositiveSide) = (numPositiveVertices == 2); int topVx = 0; if (numPositiveVertices == 1) { if (onPosSide[0]) topVx = 1; if (onPosSide[1]) topVx = 2; if (onPosSide[2]) topVx = 3; // Case 3a: Two negative distances and the last is within tolerance of zero. if (sqrSignedDistances[topVx - 1] < sqrDistanceTolerance) { return false; } } else if (numPositiveVertices == 2) { if (!onPosSide[0]) topVx = 1; if (!onPosSide[1]) topVx = 2; if (!onPosSide[2]) topVx = 3; // Case 3a: Two positive distances and the last is within tolerance of zero. if (sqrSignedDistances[topVx - 1] > -sqrDistanceTolerance) { return false; } } else { CVF_ASSERT(false); } bool ok1 = false; bool ok2 = false; if (topVx == 1) { ok1 = planeLineIntersect(plane, p1, p2, &((*newVx1).vx), &((*newVx1).normDistFromEdgeVx1), nonDimensionalTolerance); (*newVx1).clippedEdgeVx1Id = p1Id; (*newVx1).clippedEdgeVx2Id = p2Id; ok2 = planeLineIntersect(plane, p1, p3, &((*newVx2).vx), &((*newVx2).normDistFromEdgeVx1), nonDimensionalTolerance); (*newVx2).clippedEdgeVx1Id = p1Id; (*newVx2).clippedEdgeVx2Id = p3Id; } else if (topVx == 2) { ok1 = planeLineIntersect(plane, p2, p3, &((*newVx1).vx), &((*newVx1).normDistFromEdgeVx1), nonDimensionalTolerance); (*newVx1).clippedEdgeVx1Id = p2Id; (*newVx1).clippedEdgeVx2Id = p3Id; ok2 = planeLineIntersect(plane, p2, p1, &((*newVx2).vx), &((*newVx2).normDistFromEdgeVx1), nonDimensionalTolerance); (*newVx2).clippedEdgeVx1Id = p2Id; (*newVx2).clippedEdgeVx2Id = p1Id; } else if (topVx == 3) { ok1 = planeLineIntersect(plane, p3, p1, &((*newVx1).vx), &((*newVx1).normDistFromEdgeVx1), nonDimensionalTolerance); (*newVx1).clippedEdgeVx1Id = p3Id; (*newVx1).clippedEdgeVx2Id = p1Id; ok2 = planeLineIntersect(plane, p3, p2, &((*newVx2).vx), &((*newVx2).normDistFromEdgeVx1), nonDimensionalTolerance); (*newVx2).clippedEdgeVx1Id = p3Id; (*newVx2).clippedEdgeVx2Id = p2Id; } else { CVF_ASSERT(false); } //CVF_TIGHT_ASSERT(ok1 && ok2); return true; } //-------------------------------------------------------------------------------------------------- // // // P2 P2 P2 P2 // Keep Keep Keep Keep // None Top 3 Quad All // | | + | | // | | / \ | | // | | | | / \ | | | | // | | | | / \ | | | | // | | | | / \| | | | // | | | |/ 1+ | | | // | | | +2 |\ | | | // | | | /| | \ | | | // | | | / | | \ | _ | | // | | | / | | \| |\Dir | | // | | |/ | | 1+ \ | | // | | +2 | | |\ \ | | // | | /| | | | \ | | // | | / |1 |1 2| 2| \ | | // | | +--+----+----------+----+---+ | | // | |1 | | | | 2 | | // P1 P1 P1 P1 // Keep Keep Keep Keep // All Quad Top None // // // Clips the supplied triangles into new triangles returned in clippedTriangleVxes. // New vertices have set isVxIdsNative = false and their vxIds is indices into triangleVxes // The cellFaceForEachTriangleEdge refer to the edge after the corresponding triangle vertex. // This method will keep the faces provided, while added edges is marked with no face = 6 //-------------------------------------------------------------------------------------------------- void HexGridIntersectionTools::clipTrianglesBetweenTwoParallelPlanes(const std::vector& triangleVxes, const std::vector& cellFaceForEachTriangleEdge, const cvf::Plane& p1Plane, const cvf::Plane& p2Plane, std::vector* clippedTriangleVxes, std::vector* cellFaceForEachClippedTriangleEdge) { #define HT_NO_FACE 6 size_t triangleCount = triangleVxes.size() / 3; for (size_t tIdx = 0; tIdx < triangleCount; ++tIdx) { size_t triVxIdx = tIdx * 3; ClipVx newVx1OnP1; newVx1OnP1.isVxIdsNative = false; ClipVx newVx2OnP1; newVx2OnP1.isVxIdsNative = false; bool isMostVxesOnPositiveSideOfP1 = false; bool isIntersectingP1 = planeTriangleIntersection(p1Plane, triangleVxes[triVxIdx + 0].vx, triVxIdx + 0, triangleVxes[triVxIdx + 1].vx, triVxIdx + 1, triangleVxes[triVxIdx + 2].vx, triVxIdx + 2, &newVx1OnP1, &newVx2OnP1, &isMostVxesOnPositiveSideOfP1); if (!isIntersectingP1 && !isMostVxesOnPositiveSideOfP1) { continue; // Discard triangle } ClipVx newVx1OnP2; newVx1OnP2.isVxIdsNative = false; ClipVx newVx2OnP2; newVx2OnP2.isVxIdsNative = false; bool isMostVxesOnPositiveSideOfP2 = false; bool isIntersectingP2 = planeTriangleIntersection(p2Plane, triangleVxes[triVxIdx + 0].vx, triVxIdx + 0, triangleVxes[triVxIdx + 1].vx, triVxIdx + 1, triangleVxes[triVxIdx + 2].vx, triVxIdx + 2, &newVx1OnP2, &newVx2OnP2, &isMostVxesOnPositiveSideOfP2); if (!isIntersectingP2 && !isMostVxesOnPositiveSideOfP2) { continue; // Discard triangle } bool p1KeepAll = (!isIntersectingP1 && isMostVxesOnPositiveSideOfP1); bool p2KeepAll = (!isIntersectingP2 && isMostVxesOnPositiveSideOfP2); bool p1KeepQuad = ( isIntersectingP1 && isMostVxesOnPositiveSideOfP1); bool p2KeepQuad = ( isIntersectingP2 && isMostVxesOnPositiveSideOfP2); bool p1KeepTop = ( isIntersectingP1 && !isMostVxesOnPositiveSideOfP1); bool p2KeepTop = ( isIntersectingP2 && !isMostVxesOnPositiveSideOfP2); if (p1KeepAll && p2KeepAll) { // Keep the triangle clippedTriangleVxes->push_back(triangleVxes[triVxIdx + 0]); clippedTriangleVxes->push_back(triangleVxes[triVxIdx + 1]); clippedTriangleVxes->push_back(triangleVxes[triVxIdx + 2]); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[triVxIdx + 0]); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[triVxIdx + 1]); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[triVxIdx + 2]); continue; } if (p1KeepQuad && p2KeepAll) { // Split the resulting quad and add the two triangles clippedTriangleVxes->push_back(newVx2OnP1); clippedTriangleVxes->push_back(newVx1OnP1); clippedTriangleVxes->push_back(triangleVxes[newVx1OnP1.clippedEdgeVx2Id]); clippedTriangleVxes->push_back(triangleVxes[newVx1OnP1.clippedEdgeVx2Id]); clippedTriangleVxes->push_back(triangleVxes[newVx2OnP1.clippedEdgeVx2Id]); clippedTriangleVxes->push_back(newVx2OnP1); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP1.clippedEdgeVx1Id]); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP1.clippedEdgeVx2Id]); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx2OnP1.clippedEdgeVx2Id]); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); continue; } if (p2KeepQuad && p1KeepAll) { // Split the resulting quad and add the two triangles clippedTriangleVxes->push_back(newVx2OnP2); clippedTriangleVxes->push_back(newVx1OnP2); clippedTriangleVxes->push_back(triangleVxes[newVx2OnP2.clippedEdgeVx2Id]); clippedTriangleVxes->push_back(newVx1OnP2); clippedTriangleVxes->push_back(triangleVxes[newVx1OnP2.clippedEdgeVx2Id]); clippedTriangleVxes->push_back(triangleVxes[newVx2OnP2.clippedEdgeVx2Id]); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx2OnP2.clippedEdgeVx2Id]); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP2.clippedEdgeVx1Id]); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP2.clippedEdgeVx2Id]); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); continue; } if (p1KeepTop && p2KeepAll) { // Add the top triangle clippedTriangleVxes->push_back(newVx1OnP1); clippedTriangleVxes->push_back(newVx2OnP1); clippedTriangleVxes->push_back(triangleVxes[newVx1OnP1.clippedEdgeVx1Id]); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx2OnP1.clippedEdgeVx2Id]); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP1.clippedEdgeVx1Id]); continue; } if (p2KeepTop && p1KeepAll) { // Add the top triangle clippedTriangleVxes->push_back(newVx1OnP2); clippedTriangleVxes->push_back(newVx2OnP2); clippedTriangleVxes->push_back(triangleVxes[newVx1OnP2.clippedEdgeVx1Id]); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx2OnP2.clippedEdgeVx2Id]); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP2.clippedEdgeVx1Id]); continue; } if (p1KeepQuad && p2KeepQuad) { // We end up with a pentagon. clippedTriangleVxes->push_back(newVx2OnP1); clippedTriangleVxes->push_back(newVx1OnP1); clippedTriangleVxes->push_back(newVx2OnP2); clippedTriangleVxes->push_back(newVx2OnP2); clippedTriangleVxes->push_back(newVx1OnP2); clippedTriangleVxes->push_back(newVx2OnP1); // Two variants. The original point might be along newVx1OnP1 to newVx2OnP2 or along newVx2OnP1 to newVx1OnP2 if (newVx1OnP1.clippedEdgeVx2Id == newVx2OnP2.clippedEdgeVx1Id) { clippedTriangleVxes->push_back(newVx2OnP1); clippedTriangleVxes->push_back(newVx1OnP2); clippedTriangleVxes->push_back(triangleVxes[newVx2OnP1.clippedEdgeVx2Id]); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP1.clippedEdgeVx1Id]); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP2.clippedEdgeVx1Id]); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx2OnP1.clippedEdgeVx2Id]); } else { clippedTriangleVxes->push_back(newVx2OnP2); clippedTriangleVxes->push_back(newVx1OnP1); clippedTriangleVxes->push_back(triangleVxes[newVx2OnP2.clippedEdgeVx2Id]); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP2.clippedEdgeVx1Id]); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP1.clippedEdgeVx1Id]); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx2OnP2.clippedEdgeVx2Id]); } continue; } if (p1KeepQuad && p2KeepTop) { // We end up with a quad. clippedTriangleVxes->push_back(newVx1OnP1); clippedTriangleVxes->push_back(newVx1OnP2); clippedTriangleVxes->push_back(newVx2OnP1); clippedTriangleVxes->push_back(newVx1OnP2); clippedTriangleVxes->push_back(newVx2OnP2); clippedTriangleVxes->push_back(newVx2OnP1); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP1.clippedEdgeVx1Id]); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx2OnP2.clippedEdgeVx2Id]); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); continue; } if (p2KeepQuad && p1KeepTop) { // We end up with a quad. clippedTriangleVxes->push_back(newVx2OnP1); clippedTriangleVxes->push_back(newVx2OnP2); clippedTriangleVxes->push_back(newVx1OnP2); clippedTriangleVxes->push_back(newVx2OnP1); clippedTriangleVxes->push_back(newVx1OnP2); clippedTriangleVxes->push_back(newVx1OnP1); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx2OnP1.clippedEdgeVx2Id]); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP2.clippedEdgeVx1Id]); cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE); continue; } CVF_ASSERT(false); } } //-------------------------------------------------------------------------------------------------- // Creates a plane with normal perpendicular to the edge, pointing in the direction of the pointInNormalDirection //-------------------------------------------------------------------------------------------------- cvf::Plane createPlaneFromEdgeAndPointInNormalDirection(cvf::Vec3d ep1, cvf::Vec3d ep2, cvf::Vec3d pointInNormalDirection) { cvf::Vec3d ep1ep2 = ep2 - ep1; cvf::Vec3d ep1pointforNorm = pointInNormalDirection - ep1; cvf::Vec3d triNormal = ep1ep2^ep1pointforNorm; cvf::Vec3d pointInPlane = ep1 + triNormal; cvf::Plane plane; plane.setFromPoints(ep1, pointInPlane, ep2); return plane; } //-------------------------------------------------------------------------------------------------- // Clips the supplied triangles into new triangles returned in clippedTriangleVxes. // New vertices have set isVxIdsNative = false and their vxIds is indices into triangleVxes // The cellFaceForEachTriangleEdge refer to the edge after the corresponding triangle vertex. // This method will keep the faces provided, while added edges is marked with no face = 6 //-------------------------------------------------------------------------------------------------- void HexGridIntersectionTools::clipPlanarTrianglesWithInPlaneTriangle(const std::vector& triangleVxes, const std::vector& cellFaceForEachTriangleEdge, const cvf::Vec3d& tp1, const cvf::Vec3d& tp2, const cvf::Vec3d& tp3, std::vector* clippedTriangleVxes, std::vector* cellFaceForEachClippedTriangleEdge) { #define HT_NO_FACE 6 size_t triangleCount = triangleVxes.size() / 3; // Creating a plane for each of the edges of the clipping triangle std::array clipTrianglePlanes; clipTrianglePlanes[0] = createPlaneFromEdgeAndPointInNormalDirection ( tp1, tp2, tp3 ); clipTrianglePlanes[1] = createPlaneFromEdgeAndPointInNormalDirection ( tp2, tp3, tp1 ); clipTrianglePlanes[2] = createPlaneFromEdgeAndPointInNormalDirection ( tp3, tp1, tp2 ); #define reserveSize 100 std::vector currentInputTriangleVxes; currentInputTriangleVxes.reserve(reserveSize); std::vector currentInputCellFaceForEachTriangleEdge; currentInputCellFaceForEachTriangleEdge.reserve(reserveSize); std::vector currentOutputTriangleVxes; currentOutputTriangleVxes.reserve(reserveSize); std::vector currentOutputCellFaceForEachTriangleEdge; currentOutputCellFaceForEachTriangleEdge.reserve(reserveSize); for( size_t tIdx = 0; tIdx < triangleCount; ++tIdx ) { size_t triVxIdx = tIdx * 3; currentInputTriangleVxes.clear(); currentInputCellFaceForEachTriangleEdge.clear(); currentOutputTriangleVxes.clear(); currentOutputCellFaceForEachTriangleEdge.clear(); currentOutputTriangleVxes.push_back(triangleVxes[triVxIdx + 0]); currentOutputTriangleVxes.push_back(triangleVxes[triVxIdx + 1]); currentOutputTriangleVxes.push_back(triangleVxes[triVxIdx + 2]); currentOutputCellFaceForEachTriangleEdge.push_back(cellFaceForEachTriangleEdge[triVxIdx + 0]); currentOutputCellFaceForEachTriangleEdge.push_back(cellFaceForEachTriangleEdge[triVxIdx + 1]); currentOutputCellFaceForEachTriangleEdge.push_back(cellFaceForEachTriangleEdge[triVxIdx + 2]); ClipVx newVx1; newVx1.isVxIdsNative = false; ClipVx newVx2; newVx2.isVxIdsNative = false; for ( int planeIdx = 0; planeIdx < 3; ++planeIdx ) { currentInputTriangleVxes.swap(currentOutputTriangleVxes); currentInputCellFaceForEachTriangleEdge.swap(currentOutputCellFaceForEachTriangleEdge); currentOutputTriangleVxes.clear(); currentOutputCellFaceForEachTriangleEdge.clear(); size_t inTriangleCount = currentInputTriangleVxes.size()/3; for ( size_t inTrIdx = 0; inTrIdx < inTriangleCount ; ++inTrIdx ) { size_t inTriVxIdx = inTrIdx * 3; bool isMostVxesOnPositiveSide = false; bool isIntersectingPlane = planeTriangleIntersection(clipTrianglePlanes[planeIdx], currentInputTriangleVxes[inTriVxIdx + 0], inTriVxIdx + 0, currentInputTriangleVxes[inTriVxIdx + 1], inTriVxIdx + 1, currentInputTriangleVxes[inTriVxIdx + 2], inTriVxIdx + 2, &newVx1, &newVx2, &isMostVxesOnPositiveSide); if ( !isIntersectingPlane) { // All on negative side: Discard triangle if (!isMostVxesOnPositiveSide) { continue; } else // All on positive side: keep all { currentOutputTriangleVxes.push_back(currentInputTriangleVxes[inTriVxIdx + 0]); currentOutputTriangleVxes.push_back(currentInputTriangleVxes[inTriVxIdx + 1]); currentOutputTriangleVxes.push_back(currentInputTriangleVxes[inTriVxIdx + 2]); currentOutputCellFaceForEachTriangleEdge.push_back(currentInputCellFaceForEachTriangleEdge[inTriVxIdx + 0]); currentOutputCellFaceForEachTriangleEdge.push_back(currentInputCellFaceForEachTriangleEdge[inTriVxIdx + 1]); currentOutputCellFaceForEachTriangleEdge.push_back(currentInputCellFaceForEachTriangleEdge[inTriVxIdx + 2]); } } else // intersecting { if ( isMostVxesOnPositiveSide ) { // We need the Quad currentOutputTriangleVxes.push_back(newVx2.vx); currentOutputTriangleVxes.push_back(newVx1.vx); currentOutputTriangleVxes.push_back(currentInputTriangleVxes[newVx1.clippedEdgeVx2Id]); currentOutputCellFaceForEachTriangleEdge.push_back(HT_NO_FACE); currentOutputCellFaceForEachTriangleEdge.push_back(currentInputCellFaceForEachTriangleEdge[newVx1.clippedEdgeVx1Id]); currentOutputCellFaceForEachTriangleEdge.push_back(HT_NO_FACE); currentOutputTriangleVxes.push_back(currentInputTriangleVxes[newVx1.clippedEdgeVx2Id]); currentOutputTriangleVxes.push_back(currentInputTriangleVxes[newVx2.clippedEdgeVx2Id]); currentOutputTriangleVxes.push_back(newVx2.vx); currentOutputCellFaceForEachTriangleEdge.push_back(currentInputCellFaceForEachTriangleEdge[newVx1.clippedEdgeVx2Id]); currentOutputCellFaceForEachTriangleEdge.push_back(currentInputCellFaceForEachTriangleEdge[newVx2.clippedEdgeVx2Id]); currentOutputCellFaceForEachTriangleEdge.push_back(HT_NO_FACE); } else { currentOutputTriangleVxes.push_back(newVx1.vx); currentOutputTriangleVxes.push_back(newVx2.vx); currentOutputTriangleVxes.push_back(currentInputTriangleVxes[newVx1.clippedEdgeVx1Id]); currentOutputCellFaceForEachTriangleEdge.push_back(HT_NO_FACE); currentOutputCellFaceForEachTriangleEdge.push_back(currentInputCellFaceForEachTriangleEdge[newVx2.clippedEdgeVx2Id]); currentOutputCellFaceForEachTriangleEdge.push_back(currentInputCellFaceForEachTriangleEdge[newVx1.clippedEdgeVx1Id]); } } } } // Append the result of the completely clipped triangle to the output clippedTriangleVxes->insert(clippedTriangleVxes->end(), currentOutputTriangleVxes.begin(), currentOutputTriangleVxes.end()); cellFaceForEachClippedTriangleEdge->insert(cellFaceForEachClippedTriangleEdge->end(), currentOutputCellFaceForEachTriangleEdge.begin(), currentOutputCellFaceForEachTriangleEdge.end()); } } //-------------------------------------------------------------------------------------------------- /// Will return the intersection point. If the plane is outside the line, it returns the closest line endpoint //-------------------------------------------------------------------------------------------------- cvf::Vec3d HexGridIntersectionTools::planeLineIntersectionForMC(const cvf::Plane& plane, const cvf::Vec3d& p1, const cvf::Vec3d& p2, double* normalizedDistFromP1) { // From http://local.wasp.uwa.edu.au/~pbourke/geometry/planeline/ // // P1 (x1,y1,z1) and P2 (x2,y2,z2) // // P = P1 + u (P2 - P1) // // A*x1 + B*y1 + C*z1 + D // u = --------------------------------- // A*(x1-x2) + B*(y1-y2) + C*(z1-z2) CVF_TIGHT_ASSERT(normalizedDistFromP1); const cvf::Vec3d v = p2 - p1; (*normalizedDistFromP1) = 0.0; double denominator = -(plane.A()*v.x() + plane.B()*v.y() + plane.C()*v.z()); if (denominator != 0) { double u = (plane.A()*p1.x() + plane.B()*p1.y() + plane.C()*p1.z() + plane.D()) / denominator; (*normalizedDistFromP1) = u; if (u > 0.0 && u < 1.0) { return (p1 + u*v); } else { if (u >= 1.0) { return p2; } else { return p1; } } } else { return p1; } } //-------------------------------------------------------------------------------------------------- /// Based on description and implementation from Paul Bourke: /// /// http://paulbourke.net/geometry/polygonise/ /// /// Note that the element is turned inside-out compared to what we use elsewhere in caf/ResInsight /// So the winding of all the sides are opposite. /// 4-----4------5 /// /| /| k POS_I = 0 /// 7 8 5 9 | NEG_I = 1 /// / | / | | POS_J = 2 /// 7------6-----6 | | NEG_J = 3 /// | 0-----0--|---1 *------i POS_K = 4 /// 11 / 10 / / NEG_K = 5 /// | 3 | 1 / NO_FACE = 6 /// |/ |/ j /// 3------2-----2 /// // The cellFaceForEachTriangleEdge refer to the edge after the corresponding triangle vertex. //-------------------------------------------------------------------------------------------------- int HexGridIntersectionTools::planeHexIntersectionMC(const cvf::Plane& plane, const cvf::Vec3d cell[8], const size_t hexCornersIds[8], std::vector* triangleVxes, std::vector* cellFaceForEachTriangleEdge) { static const cvf::uint cubeIdxToCutEdgeBitfield[256] = { 0x0, 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c, 0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00, 0x190, 0x99, 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c, 0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90, 0x230, 0x339, 0x33, 0x13a, 0x636, 0x73f, 0x435, 0x53c, 0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30, 0x3a0, 0x2a9, 0x1a3, 0xaa, 0x7a6, 0x6af, 0x5a5, 0x4ac, 0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0, 0x460, 0x569, 0x663, 0x76a, 0x66, 0x16f, 0x265, 0x36c, 0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60, 0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff, 0x3f5, 0x2fc, 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0, 0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55, 0x15c, 0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950, 0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc, 0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0, 0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc, 0xcc, 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0, 0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c, 0x15c, 0x55, 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650, 0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc, 0x2fc, 0x3f5, 0xff, 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0, 0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c, 0x36c, 0x265, 0x16f, 0x66, 0x76a, 0x663, 0x569, 0x460, 0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac, 0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa, 0x1a3, 0x2a9, 0x3a0, 0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c, 0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33, 0x339, 0x230, 0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c, 0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99, 0x190, 0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c, 0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0 }; static const int cubeIdxToTriangleIndices[256][16] = { { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1 }, { 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1 }, { 3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1 }, { 3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1 }, { 9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1 }, { 1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1 }, { 9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1 }, { 2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1 }, { 8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1 }, { 9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1 }, { 4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1 }, { 3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1 }, { 1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1 }, { 4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1 }, { 4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1 }, { 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1 }, { 1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1 }, { 5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1 }, { 2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1 }, { 9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1 }, { 0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1 }, { 2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1 }, { 10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1 }, { 4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1 }, { 5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1 }, { 5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1 }, { 9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1 }, { 0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1 }, { 1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1 }, { 10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1 }, { 8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1 }, { 2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1 }, { 7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1 }, { 9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1 }, { 2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1 }, { 11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1 }, { 9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1 }, { 5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1 }, { 11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1 }, { 11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1 }, { 1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1 }, { 9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1 }, { 5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1 }, { 2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1 }, { 0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1 }, { 5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1 }, { 6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1 }, { 0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1 }, { 3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1 }, { 6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1 }, { 5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1 }, { 1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1 }, { 10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1 }, { 6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1 }, { 1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1 }, { 8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1 }, { 7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1 }, { 3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1 }, { 5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1 }, { 0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1 }, { 9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1 }, { 8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1 }, { 5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1 }, { 0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1 }, { 6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1 }, { 10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1 }, { 10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1 }, { 8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1 }, { 1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1 }, { 3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1 }, { 0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1 }, { 10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1 }, { 0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1 }, { 3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1 }, { 6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1 }, { 9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1 }, { 8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1 }, { 3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1 }, { 6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1 }, { 0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1 }, { 10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1 }, { 10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1 }, { 1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1 }, { 2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1 }, { 7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1 }, { 7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1 }, { 2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1 }, { 1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1 }, { 11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1 }, { 8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1 }, { 0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1 }, { 7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1 }, { 10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1 }, { 2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1 }, { 6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1 }, { 7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1 }, { 2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1 }, { 1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1 }, { 10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1 }, { 10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1 }, { 0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1 }, { 7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1 }, { 6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1 }, { 8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1 }, { 9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1 }, { 6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1 }, { 1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1 }, { 4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1 }, { 10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1 }, { 8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1 }, { 0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1 }, { 1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1 }, { 8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1 }, { 10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1 }, { 4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1 }, { 10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1 }, { 5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1 }, { 11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1 }, { 9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1 }, { 6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1 }, { 7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1 }, { 3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1 }, { 7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1 }, { 9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1 }, { 3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1 }, { 6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1 }, { 9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1 }, { 1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1 }, { 4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1 }, { 7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1 }, { 6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1 }, { 3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1 }, { 0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1 }, { 6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1 }, { 1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1 }, { 0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1 }, { 11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1 }, { 6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1 }, { 5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1 }, { 9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1 }, { 1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1 }, { 1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1 }, { 10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1 }, { 0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1 }, { 5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1 }, { 10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1 }, { 11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1 }, { 0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1 }, { 9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1 }, { 7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1 }, { 2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1 }, { 8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1 }, { 9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1 }, { 9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1 }, { 1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1 }, { 9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1 }, { 9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1 }, { 5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1 }, { 0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1 }, { 10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1 }, { 2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1 }, { 0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1 }, { 0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1 }, { 9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1 }, { 5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1 }, { 3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1 }, { 5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1 }, { 8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1 }, { 0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1 }, { 9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1 }, { 0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1 }, { 1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1 }, { 3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1 }, { 4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1 }, { 9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1 }, { 11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1 }, { 11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1 }, { 2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1 }, { 9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1 }, { 3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1 }, { 1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1 }, { 4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1 }, { 4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1 }, { 0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1 }, { 3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1 }, { 3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1 }, { 0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1 }, { 9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1 }, { 1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { 0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }; static const int edgeTable[12][2] = { {0, 1}, {1, 2}, {2, 3}, {3, 0}, {4, 5}, {5, 6}, {6, 7}, {7, 4}, {0, 4}, {1, 5}, {2, 6}, {3, 7} }; int cubeIndex = 0; if (plane.distanceSquared(cell[0]) < 0) cubeIndex |= 1; if (plane.distanceSquared(cell[1]) < 0) cubeIndex |= 2; if (plane.distanceSquared(cell[2]) < 0) cubeIndex |= 4; if (plane.distanceSquared(cell[3]) < 0) cubeIndex |= 8; if (plane.distanceSquared(cell[4]) < 0) cubeIndex |= 16; if (plane.distanceSquared(cell[5]) < 0) cubeIndex |= 32; if (plane.distanceSquared(cell[6]) < 0) cubeIndex |= 64; if (plane.distanceSquared(cell[7]) < 0) cubeIndex |= 128; if (cubeIdxToCutEdgeBitfield[cubeIndex] == 0) { return 0; } cvf::Vec3d edgeIntersections[12]; double normDistAlongEdge[12]; // Compute vertex coordinates on the edges where we have intersections if (cubeIdxToCutEdgeBitfield[cubeIndex] & 1) edgeIntersections[0] = planeLineIntersectionForMC(plane, cell[0], cell[1], &normDistAlongEdge[0]); if (cubeIdxToCutEdgeBitfield[cubeIndex] & 2) edgeIntersections[1] = planeLineIntersectionForMC(plane, cell[1], cell[2], &normDistAlongEdge[1]); if (cubeIdxToCutEdgeBitfield[cubeIndex] & 4) edgeIntersections[2] = planeLineIntersectionForMC(plane, cell[2], cell[3], &normDistAlongEdge[2]); if (cubeIdxToCutEdgeBitfield[cubeIndex] & 8) edgeIntersections[3] = planeLineIntersectionForMC(plane, cell[3], cell[0], &normDistAlongEdge[3]); if (cubeIdxToCutEdgeBitfield[cubeIndex] & 16) edgeIntersections[4] = planeLineIntersectionForMC(plane, cell[4], cell[5], &normDistAlongEdge[4]); if (cubeIdxToCutEdgeBitfield[cubeIndex] & 32) edgeIntersections[5] = planeLineIntersectionForMC(plane, cell[5], cell[6], &normDistAlongEdge[5]); if (cubeIdxToCutEdgeBitfield[cubeIndex] & 64) edgeIntersections[6] = planeLineIntersectionForMC(plane, cell[6], cell[7], &normDistAlongEdge[6]); if (cubeIdxToCutEdgeBitfield[cubeIndex] & 128) edgeIntersections[7] = planeLineIntersectionForMC(plane, cell[7], cell[4], &normDistAlongEdge[7]); if (cubeIdxToCutEdgeBitfield[cubeIndex] & 256) edgeIntersections[8] = planeLineIntersectionForMC(plane, cell[0], cell[4], &normDistAlongEdge[8]); if (cubeIdxToCutEdgeBitfield[cubeIndex] & 512) edgeIntersections[9] = planeLineIntersectionForMC(plane, cell[1], cell[5], &normDistAlongEdge[9]); if (cubeIdxToCutEdgeBitfield[cubeIndex] & 1024) edgeIntersections[10] = planeLineIntersectionForMC(plane, cell[2], cell[6], &normDistAlongEdge[10]); if (cubeIdxToCutEdgeBitfield[cubeIndex] & 2048) edgeIntersections[11] = planeLineIntersectionForMC(plane, cell[3], cell[7], &normDistAlongEdge[11]); // Create the triangles const int* triangleIndicesToCubeEdges = cubeIdxToTriangleIndices[cubeIndex]; cvf::uint triangleVxIdx = 0; int cubeEdgeIdx = triangleIndicesToCubeEdges[triangleVxIdx]; while (cubeEdgeIdx != -1) { ClipVx cvx; cvx.vx = edgeIntersections[cubeEdgeIdx]; cvx.normDistFromEdgeVx1 = normDistAlongEdge[cubeEdgeIdx]; cvx.clippedEdgeVx1Id = hexCornersIds[edgeTable[cubeEdgeIdx][0]]; cvx.clippedEdgeVx2Id = hexCornersIds[edgeTable[cubeEdgeIdx][1]]; (*triangleVxes).push_back(cvx); ++triangleVxIdx; cubeEdgeIdx = triangleIndicesToCubeEdges[triangleVxIdx]; } cvf::uint triangleCount = triangleVxIdx / 3; static const int edgeEdgeCutsToCellFace[12][12] = { // 0 1 2 3 4 5 6 7 8 9 10 11 { 6, 5, 5, 5, 3, 6, 6, 6, 3, 3, 6, 6 }, // 0 { 5, 6, 5, 5, 6, 0, 6, 6, 6, 0, 0, 6 }, // 1 POS_I = 0 { 5, 5, 6, 5, 6, 6, 2, 6, 6, 6, 2, 2 }, // 2 NEG_I = 1 { 5, 5, 5, 6, 6, 6, 6, 1, 1, 6, 6, 1 }, // 3 POS_J = 2 { 3, 6, 6, 6, 6, 4, 4, 4, 3, 3, 6, 6 }, // 4 NEG_J = 3 { 6, 0, 6, 6, 4, 6, 4, 4, 6, 0, 0, 6 }, // 5 POS_K = 4 { 6, 6, 2, 6, 4, 4, 6, 4, 6, 6, 2, 2 }, // 6 NEG_K = 5 { 6, 6, 6, 1, 4, 4, 4, 6, 1, 6, 6, 1 }, // 7 NO_FACE = 6 { 3, 6, 6, 1, 3, 6, 6, 1, 6, 3, 6, 1 }, // 8 { 3, 0, 6, 6, 3, 0, 6, 6, 3, 6, 0, 6 }, // 9 { 6, 0, 2, 6, 6, 0, 2, 6, 6, 0, 6, 2 }, // 10 { 6, 6, 2, 1, 6, 6, 2, 1, 1, 6, 2, 6 } // 11 }; (*cellFaceForEachTriangleEdge).clear(); (*cellFaceForEachTriangleEdge).resize(triangleVxIdx, 6); for (cvf::uint tIdx = 0; tIdx < triangleCount; ++tIdx) { cvf::uint triVxIdx = 3 * tIdx; int cubeEdgeIdx1 = triangleIndicesToCubeEdges[triVxIdx]; int cubeEdgeIdx2 = triangleIndicesToCubeEdges[triVxIdx + 1]; int cubeEdgeIdx3 = triangleIndicesToCubeEdges[triVxIdx + 2]; (*cellFaceForEachTriangleEdge)[triVxIdx + 0] = edgeEdgeCutsToCellFace[cubeEdgeIdx1][cubeEdgeIdx2]; (*cellFaceForEachTriangleEdge)[triVxIdx + 1] = edgeEdgeCutsToCellFace[cubeEdgeIdx2][cubeEdgeIdx3]; (*cellFaceForEachTriangleEdge)[triVxIdx + 2] = edgeEdgeCutsToCellFace[cubeEdgeIdx3][cubeEdgeIdx1]; } #if 0 // Calculate what triangle edges are representing the cut of a cell face // Do this by counting the times two specific cube edges are used for a triangle edge. // Internal edges will have a count of 2, while external edges only 1 (*isTriEdgeCellContour).clear(); (*isTriEdgeCellContour).resize(triangleVxIdx); int triangleEdgeCount[12][12] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }; (*isTriEdgeCellContour).clear(); (*isTriEdgeCellContour).resize(triangleVxIdx, false); for (cvf::uint tIdx = 0; tIdx < triangleCount; ++tIdx) { cvf::uint triVxIdx = 3 * tIdx; int cubeEdgeIdx1 = triangleIndicesToCubeEdges[triVxIdx]; int cubeEdgeIdx2 = triangleIndicesToCubeEdges[triVxIdx + 1]; int cubeEdgeIdx3 = triangleIndicesToCubeEdges[triVxIdx + 2]; cubeEdgeIdx1 < cubeEdgeIdx2 ? ++triangleEdgeCount[cubeEdgeIdx1][cubeEdgeIdx2] : ++triangleEdgeCount[cubeEdgeIdx2][cubeEdgeIdx1]; cubeEdgeIdx2 < cubeEdgeIdx3 ? ++triangleEdgeCount[cubeEdgeIdx2][cubeEdgeIdx3] : ++triangleEdgeCount[cubeEdgeIdx3][cubeEdgeIdx2]; cubeEdgeIdx3 < cubeEdgeIdx1 ? ++triangleEdgeCount[cubeEdgeIdx3][cubeEdgeIdx1] : ++triangleEdgeCount[cubeEdgeIdx1][cubeEdgeIdx3]; } for (cvf::uint tIdx = 0; tIdx < triangleCount; ++tIdx) { cvf::uint triVxIdx = 3 * tIdx; int cubeEdgeIdx1 = triangleIndicesToCubeEdges[triVxIdx]; int cubeEdgeIdx2 = triangleIndicesToCubeEdges[triVxIdx + 1]; int cubeEdgeIdx3 = triangleIndicesToCubeEdges[triVxIdx + 2]; // We have a contour if the count is exactly 1. (*isTriEdgeCellContour)[triVxIdx + 0] = (1 == (cubeEdgeIdx1 < cubeEdgeIdx2 ? triangleEdgeCount[cubeEdgeIdx1][cubeEdgeIdx2] : triangleEdgeCount[cubeEdgeIdx2][cubeEdgeIdx1])); (*isTriEdgeCellContour)[triVxIdx + 1] = (1 == (cubeEdgeIdx2 < cubeEdgeIdx3 ? triangleEdgeCount[cubeEdgeIdx2][cubeEdgeIdx3] : triangleEdgeCount[cubeEdgeIdx3][cubeEdgeIdx2])); (*isTriEdgeCellContour)[triVxIdx + 2] = (1 == (cubeEdgeIdx3 < cubeEdgeIdx1 ? triangleEdgeCount[cubeEdgeIdx3][cubeEdgeIdx1] : triangleEdgeCount[cubeEdgeIdx1][cubeEdgeIdx3])); } #endif return triangleCount; } //-------------------------------------------------------------------------------------------------- /// Based on description and implementation from Paul Bourke: /// /// http://paulbourke.net/geometry/polygonise/ /// /// Note that the element is turned inside-out compared to what we use elsewhere in caf/ResInsight /// So the winding of all the sides are opposite. /// 4-----4------5 /// /| /| k POS_I = 0 /// 7 8 5 9 | NEG_I = 1 /// / | / | | POS_J = 2 /// 7------6-----6 | | NEG_J = 3 /// | 0-----0--|---1 *------i POS_K = 4 /// 11 / 10 / / NEG_K = 5 /// | 3 | 1 / NO_FACE = 6 /// |/ |/ j /// 3------2-----2 /// // The cellFaceForEachTriangleEdge refer to the edge after the corresponding triangle vertex. /* Based on description and implementation from Paul Bourke: http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/ Polygonise a tetrahedron given its vertices within a cube This is an alternative algorithm to polygonisegrid. It results in a smoother surface but more triangular facets. + 0 + 0 /|\ /|\ / | \ / | \ / | \ / | \ / | \ / | \ / | \ / 2 | \ / | \ / __--+_ \ +-------------+ 1 3 +--__ --_ \ 3 \ | / ---__ --_\ \ | / ---__-\ \ | / --+ 1 \ | / \ | / \|/ 2 is behind 1 and 3 + 2 Build six tets from a cube to make sure the split direction is equal for opposite sides. Surface normals are pointing outward. See following comment is taken from http://www.iue.tuwien.ac.at/phd/wessner/node32.html The decompositions of a cube into five tetrahedra yields an orientation switch of two opposite diagonal face edges of the cube. Due to this fact, the tessellation of one cube, as part of a larger cubic grid, forces a particular tessellation of all neighboring cubes to guarantee a conformal mesh. This means that, if such five-decompositions cubes are stacked together to a chain, the mesh of each cube must be rotated by an angle of 90 deg The tessellation makes sure opposite faces are divided along the same line See figure http://www.ics.uci.edu/~eppstein/projects/tetra/ 4, 5, 6, 0 0, 1, 5, 6 0, 2, 1, 6 4, 6, 7, 0 0, 7, 3, 6 0, 3, 2, 6 Introduces the additional diagonal edges in the Hex from 12 up to and including 18: 0 2 // 12 NEG_K 0 5 // 13 NEG_J 1 6 // 14 POS_I 3 6 // 15 POS_J 0 7 // 16 NEG_I 4 6 // 17 POS_K 0 6 // 18 Internal Diagonal /// 4-----4------5 /// /| /| k POS_I = 0 /// 7 8 17 5 9 | NEG_I = 1 /// / | 13 / | | POS_J = 2 /// 7------6-----6 14| | NEG_J = 3 /// |16 0-----0--|---1 *------i POS_K = 4 /// 11 / 15 10 / / NEG_K = 5 /// | 3 12 | 1 / NO_FACE = 6 /// |/ |/ j /// 3------2-----2 */ //-------------------------------------------------------------------------------------------------- int HexGridIntersectionTools::planeHexIntersectionMCTet( const cvf::Plane& plane, const cvf::Vec3d cell[8], const size_t hexCornersIds[8], std::vector* triangleVxes, std::vector* cellFaceForEachTriangleEdge ) { std::array cellCornerSqDistToPlane = { plane.distanceSquared( cell[0] ), plane.distanceSquared( cell[1] ), plane.distanceSquared( cell[2] ), plane.distanceSquared( cell[3] ), plane.distanceSquared( cell[4] ), plane.distanceSquared( cell[5] ), plane.distanceSquared( cell[6] ), plane.distanceSquared( cell[7] ), }; int cubeIndex = 0; if (cellCornerSqDistToPlane[0] < 0) cubeIndex |= 1; if (cellCornerSqDistToPlane[1] < 0) cubeIndex |= 2; if (cellCornerSqDistToPlane[2] < 0) cubeIndex |= 4; if (cellCornerSqDistToPlane[3] < 0) cubeIndex |= 8; if (cellCornerSqDistToPlane[4] < 0) cubeIndex |= 16; if (cellCornerSqDistToPlane[5] < 0) cubeIndex |= 32; if (cellCornerSqDistToPlane[6] < 0) cubeIndex |= 64; if (cellCornerSqDistToPlane[7] < 0) cubeIndex |= 128; if (cubeIndex == 0 || cubeIndex == 255) return 0; int tetCount = 0; tetCount += planeMcTetIntersection(plane, cell, hexCornersIds, cellCornerSqDistToPlane.data(), { 4, 5, 6, 0 }, triangleVxes, cellFaceForEachTriangleEdge ); tetCount += planeMcTetIntersection(plane, cell, hexCornersIds, cellCornerSqDistToPlane.data(), { 0, 1, 5, 6 }, triangleVxes, cellFaceForEachTriangleEdge ); tetCount += planeMcTetIntersection(plane, cell, hexCornersIds, cellCornerSqDistToPlane.data(), { 0, 2, 1, 6 }, triangleVxes, cellFaceForEachTriangleEdge ); tetCount += planeMcTetIntersection(plane, cell, hexCornersIds, cellCornerSqDistToPlane.data(), { 4, 6, 7, 0 }, triangleVxes, cellFaceForEachTriangleEdge ); tetCount += planeMcTetIntersection(plane, cell, hexCornersIds, cellCornerSqDistToPlane.data(), { 0, 7, 3, 6 }, triangleVxes, cellFaceForEachTriangleEdge ); tetCount += planeMcTetIntersection(plane, cell, hexCornersIds, cellCornerSqDistToPlane.data(), { 0, 3, 2, 6 }, triangleVxes, cellFaceForEachTriangleEdge ); return tetCount; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::uint HexGridIntersectionTools::planeMcTetIntersection( const cvf::Plane& plane, const cvf::Vec3d hexCell[8], const size_t hexCornersIds[8], const double cornerDistToPlane[8], const std::array & tetCell, std::vector* triangleVxes, std::vector* cellFaceForEachTriangleEdge ) { static const int edgeEdgeCutsToCellFace[19][19] = { // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 4--------------4---------------5 { 6, 5, 5, 5, 3, 6, 6, 6, 3, 3, 6, 6, 5, 3, 6, 6, 6, 6, 6 }, // 0 /|\__ __//| { 5, 6, 5, 5, 6, 0, 6, 6, 6, 0, 0, 6, 5, 6, 0, 6, 6, 6, 6 }, // 1 POS_I = 0 / | \___ _/ / | { 5, 5, 6, 5, 6, 6, 2, 6, 6, 6, 2, 2, 5, 6, 6, 2, 6, 6, 6 }, // 2 NEG_I = 1 7 | \__ __/ / | k { 5, 5, 5, 6, 6, 6, 6, 1, 1, 6, 6, 1, 5, 6, 6, 6, 1, 6, 6 }, // 3 POS_J = 2 / | 17___ _/ 5 | | { 3, 6, 6, 6, 6, 4, 4, 4, 3, 3, 6, 6, 6, 3, 6, 6, 6, 4, 6 }, // 4 NEG_J = 3 / 8 \___ / 9 | { 6, 0, 6, 6, 4, 6, 4, 4, 6, 0, 0, 6, 6, 6, 0, 6, 6, 4, 6 }, // 5 POS_K = 4 / | __/ \___ / | | { 6, 6, 2, 6, 4, 4, 6, 4, 6, 6, 2, 2, 6, 6, 6, 2, 6, 4, 6 }, // 6 NEG_K = 5 7---------------6--------------6 | *------i { 6, 6, 6, 1, 4, 4, 4, 6, 1, 6, 6, 1, 6, 6, 6, 6, 1, 4, 6 }, // 7 NO_FACE = 6 |\_ | __13 ____/_/|\_ | / { 3, 6, 6, 1, 3, 6, 6, 1, 6, 3, 6, 1, 6, 3, 6, 6, 1, 6, 6 }, // 8 | 16 | __/ _18_/ __/ | 14 | / { 3, 0, 6, 6, 3, 0, 6, 6, 3, 6, 0, 6, 6, 3, 0, 6, 6, 6, 6 }, // 9 | \_ | __/____/ _/ | \_ | j { 6, 0, 2, 6, 6, 0, 2, 6, 6, 0, 6, 2, 6, 6, 0, 2, 6, 6, 6 }, // 10 | \|__/__/ __/ | \| { 6, 6, 2, 1, 6, 6, 2, 1, 1, 6, 2, 6, 6, 6, 6, 2, 1, 6, 6 }, // 11 | 0-----------_/----0-----|------1 { 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 }, // 12 11 / \__ __15 10 / { 3, 6, 6, 6, 3, 6, 6, 6, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6 }, // 13 | / \_ _/ | / { 6, 0, 6, 6, 6, 0, 6, 6, 6, 0, 0, 6, 6, 6, 6, 6, 6, 6, 6 }, // 14 | 3 __/ \___ | 1 { 6, 6, 2, 6, 6, 6, 2, 6, 6, 6, 2, 2, 6, 6, 6, 6, 6, 6, 6 }, // 15 | / __/ 12__ | / { 6, 6, 6, 1, 6, 6, 6, 1, 1, 6, 6, 1, 6, 6, 6, 6, 6, 6, 6 }, // 16 | / __/ \___ | / { 6, 6, 6, 6, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 }, // 17 |/__/ \___|/ { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 }, // 18 3---------------2--------------2 }; static const int cellCornerCellCornerToEdge[8][8] = { // 0 1 2 3 4 5 6 7 { -1, 0, 12, 3, 8, 13, 18, 16 }, // 0 { 0, -1, 1, -1, -1, 9, 14, -1 }, // 1 { 12, 1, -1, 2, -1, -1, 10, -1 }, // 2 { 3, -1, 2, -1, -1, -1, 15, 11 }, // 3 { 8, -1, -1, -1, -1, 4, 17, 7 }, // 4 { 13, 9, -1, -1, 4, -1, 5, -1 }, // 5 { 18, 14, 10, 15, 17, 5, -1, 6 }, // 6 { 16, -1, -1, 11, 7, -1, 6, -1 }, // 7 }; cvf::uint ntri = 0; int triindex = 0; if( cornerDistToPlane[tetCell[0]] < 0 ) triindex |= 1; if( cornerDistToPlane[tetCell[1]] < 0 ) triindex |= 2; if( cornerDistToPlane[tetCell[2]] < 0 ) triindex |= 4; if( cornerDistToPlane[tetCell[3]] < 0 ) triindex |= 8; auto clipEdgeFunc = [&]( int hexCornerIdx0, int hexCornerIdx1 ) { ClipVx cvx; cvx.vx = planeLineIntersectionForMC( plane, hexCell[hexCornerIdx0], hexCell[hexCornerIdx1], &cvx.normDistFromEdgeVx1 ); cvx.clippedEdgeVx1Id = hexCornersIds[hexCornerIdx0]; cvx.clippedEdgeVx2Id = hexCornersIds[hexCornerIdx1]; return cvx; }; auto addCellFaceStatusForTriangleEdges = [&]( int e11, int e12, int e21, int e22, int e31, int e32) { int cutEdge1 = cellCornerCellCornerToEdge[e11][e12]; int cutEdge2 = cellCornerCellCornerToEdge[e21][e22]; int cutEdge3 = cellCornerCellCornerToEdge[e31][e32]; CVF_ASSERT(cutEdge1 >= 0); CVF_ASSERT(cutEdge2 >= 0); CVF_ASSERT(cutEdge3 >= 0); cellFaceForEachTriangleEdge->emplace_back( edgeEdgeCutsToCellFace[cutEdge1][cutEdge2] ); cellFaceForEachTriangleEdge->emplace_back( edgeEdgeCutsToCellFace[cutEdge2][cutEdge3] ); cellFaceForEachTriangleEdge->emplace_back( edgeEdgeCutsToCellFace[cutEdge3][cutEdge1] ); }; switch( triindex ) { case 0x00: case 0x0F: break; case 0x0E: case 0x01: { triangleVxes->emplace_back( clipEdgeFunc( tetCell[0], tetCell[1] ) ); triangleVxes->emplace_back( clipEdgeFunc( tetCell[0], tetCell[2] ) ); triangleVxes->emplace_back( clipEdgeFunc( tetCell[0], tetCell[3] ) ); addCellFaceStatusForTriangleEdges(tetCell[0], tetCell[1], tetCell[0], tetCell[2], tetCell[0], tetCell[3]); ntri++; } break; case 0x0D: case 0x02: { triangleVxes->emplace_back( clipEdgeFunc( tetCell[1], tetCell[0] ) ); triangleVxes->emplace_back( clipEdgeFunc( tetCell[1], tetCell[3] ) ); triangleVxes->emplace_back( clipEdgeFunc( tetCell[1], tetCell[2] ) ); addCellFaceStatusForTriangleEdges( tetCell[1], tetCell[0], tetCell[1], tetCell[3], tetCell[1], tetCell[2] ); ntri++; } break; case 0x0C: case 0x03: { triangleVxes->emplace_back( clipEdgeFunc( tetCell[0], tetCell[3] ) ); ClipVx vx1 = clipEdgeFunc( tetCell[0], tetCell[2] ); triangleVxes->push_back( vx1 ); ClipVx vx2 = clipEdgeFunc( tetCell[1], tetCell[3] ); triangleVxes->push_back( vx2 ); addCellFaceStatusForTriangleEdges( tetCell[0], tetCell[3], tetCell[0], tetCell[2], tetCell[1], tetCell[3] ); ntri++; triangleVxes->push_back( vx2 ); triangleVxes->emplace_back( clipEdgeFunc( tetCell[1], tetCell[2] ) ); triangleVxes->push_back( vx1 ); addCellFaceStatusForTriangleEdges( tetCell[1], tetCell[3], tetCell[1], tetCell[2], tetCell[0], tetCell[2] ); ntri++; } break; case 0x0B: case 0x04: { triangleVxes->emplace_back( clipEdgeFunc( tetCell[2], tetCell[0] ) ); triangleVxes->emplace_back( clipEdgeFunc( tetCell[2], tetCell[1] ) ); triangleVxes->emplace_back( clipEdgeFunc( tetCell[2], tetCell[3] ) ); addCellFaceStatusForTriangleEdges( tetCell[2], tetCell[0], tetCell[2], tetCell[1], tetCell[2], tetCell[3] ); ntri++; } break; case 0x0A: case 0x05: { ClipVx vx0 = clipEdgeFunc( tetCell[0], tetCell[1] ); triangleVxes->push_back( vx0 ); ClipVx vx1 = clipEdgeFunc( tetCell[2], tetCell[3] ); triangleVxes->push_back( vx1 ); ClipVx vx2 = clipEdgeFunc( tetCell[0], tetCell[3] ); triangleVxes->push_back( vx2 ); addCellFaceStatusForTriangleEdges( tetCell[0], tetCell[1], tetCell[2], tetCell[3], tetCell[0], tetCell[3] ); ntri++; triangleVxes->push_back( vx0 ); triangleVxes->emplace_back( clipEdgeFunc( tetCell[1], tetCell[2] ) ); triangleVxes->push_back( vx1 ); addCellFaceStatusForTriangleEdges( tetCell[0], tetCell[1], tetCell[1], tetCell[2], tetCell[2], tetCell[3] ); ntri++; } break; case 0x09: case 0x06: { ClipVx vx0 = clipEdgeFunc( tetCell[0], tetCell[1] ); triangleVxes->push_back( vx0 ); ClipVx vx1 = clipEdgeFunc( tetCell[1], tetCell[3] ); triangleVxes->push_back( vx1 ); ClipVx vx2 = clipEdgeFunc( tetCell[2], tetCell[3] ); triangleVxes->push_back( vx2 ); addCellFaceStatusForTriangleEdges( tetCell[0], tetCell[1], tetCell[1], tetCell[3], tetCell[2], tetCell[3] ); ntri++; triangleVxes->push_back( vx0 ); triangleVxes->emplace_back( clipEdgeFunc( tetCell[0], tetCell[2] ) ); triangleVxes->push_back( vx2 ); addCellFaceStatusForTriangleEdges( tetCell[0], tetCell[1], tetCell[0], tetCell[2], tetCell[2], tetCell[3] ); ntri++; } break; case 0x07: case 0x08: { triangleVxes->emplace_back( clipEdgeFunc( tetCell[3], tetCell[0] ) ); triangleVxes->emplace_back( clipEdgeFunc( tetCell[3], tetCell[2] ) ); triangleVxes->emplace_back( clipEdgeFunc( tetCell[3], tetCell[1] ) ); addCellFaceStatusForTriangleEdges( tetCell[3], tetCell[0], tetCell[3], tetCell[2], tetCell[3], tetCell[1] ); ntri++; } break; } return ntri; } } // namespace cvf