///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) Statoil ASA // Copyright (C) Ceetron Solutions AS // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// //================================================================================================== /// //================================================================================================== #include "RigGeoMechWellLogExtractor.h" #include "RiaDefines.h" #include "RiaLogging.h" #include "RiaResultNames.h" #include "RiaWeightedMeanCalculator.h" #include "RigFemPart.h" #include "RigFemPartCollection.h" #include "RigFemPartResultsCollection.h" #include "RigFemTypes.h" #include "RigGeoMechBoreHoleStressCalculator.h" #include "RigGeoMechCaseData.h" #include "RiaWellLogUnitTools.h" #include "RigWellLogExtractionTools.h" #include "RigWellPath.h" #include "RigWellPathGeometryTools.h" #include "RigWellPathIntersectionTools.h" #include "cafTensor3.h" #include "cvfGeometryTools.h" #include "cvfMath.h" #include #include #include const double RigGeoMechWellLogExtractor::PURE_WATER_DENSITY_GCM3 = 1.0; // g / cm^3 const double RigGeoMechWellLogExtractor::GRAVITY_ACCEL = 9.81; // m / s^2 //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigGeoMechWellLogExtractor::RigGeoMechWellLogExtractor( gsl::not_null aCase, gsl::not_null wellpath, const std::string& wellCaseErrorMsgName ) : RigWellLogExtractor( wellpath, wellCaseErrorMsgName ) , m_caseData( aCase ) { calculateIntersection(); m_waterDepth = calculateWaterDepth(); for ( RigWbsParameter parameter : RigWbsParameter::allParameters() ) { m_parameterSources[parameter] = parameter.sources().front(); m_lasFileValues[parameter] = std::vector>(); m_userDefinedValues[parameter] = std::numeric_limits::infinity(); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigGeoMechWellLogExtractor::performCurveDataSmoothing( int timeStepIndex, int frameIndex, std::vector* mds, std::vector* tvds, std::vector* values, const double smoothingTreshold ) { CVF_ASSERT( mds && tvds && values ); RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults(); RigFemResultAddress shAddr( RIG_ELEMENT_NODAL, "ST", "S3" ); RigFemResultAddress porBarResAddr( RIG_ELEMENT_NODAL, "POR-Bar", "" ); const std::vector& unscaledShValues = resultCollection->resultValues( shAddr, 0, timeStepIndex, frameIndex ); const std::vector& porePressures = resultCollection->resultValues( porBarResAddr, 0, timeStepIndex, frameIndex ); std::vector interfaceShValues = interpolateInterfaceValues( shAddr, timeStepIndex, frameIndex, unscaledShValues ); std::vector interfacePorePressures = interpolateInterfaceValues( porBarResAddr, timeStepIndex, frameIndex, porePressures ); std::vector interfaceShValuesDbl( interfaceShValues.size(), std::numeric_limits::infinity() ); std::vector interfacePorePressuresDbl( interfacePorePressures.size(), std::numeric_limits::infinity() ); #pragma omp parallel for for ( int64_t i = 0; i < static_cast( intersections().size() ); ++i ) { double hydroStaticPorePressureBar = hydroStaticPorePressureForSegment( i ); interfaceShValuesDbl[i] = interfaceShValues[i] / hydroStaticPorePressureBar; interfacePorePressuresDbl[i] = interfacePorePressures[i]; } if ( !mds->empty() && !values->empty() ) { std::vector smoothOrFilterSegments = determineFilteringOrSmoothing( interfacePorePressuresDbl ); smoothSegments( mds, tvds, values, interfaceShValuesDbl, smoothOrFilterSegments, smoothingTreshold ); } } //-------------------------------------------------------------------------------------------------- /// Get curve data for a given parameter. Returns the output units of the data. //-------------------------------------------------------------------------------------------------- QString RigGeoMechWellLogExtractor::curveData( const RigFemResultAddress& resAddr, int timeStepIndex, int frameIndex, std::vector* values ) { CVF_TIGHT_ASSERT( values ); if ( resAddr.resultPosType == RIG_WELLPATH_DERIVED ) { if ( m_wellPathGeometry->rkbDiff() == HUGE_VAL ) { RiaLogging::error( "Well path has an invalid datum elevation and we cannot estimate TVDRKB. No well bore " "stability curves created." ); return ""; } if ( !isValid( m_waterDepth ) ) { RiaLogging::error( "Well path does not intersect with sea floor. No well bore " "stability curves created." ); return ""; } if ( resAddr.fieldName == RiaResultNames::wbsFGResult().toStdString() ) { wellBoreWallCurveData( resAddr, timeStepIndex, frameIndex, values ); // Try to replace invalid values with Shale-values wellBoreFGShale( timeStepIndex, frameIndex, values ); values->front() = wbsCurveValuesAtMsl(); } else if ( resAddr.fieldName == RiaResultNames::wbsSFGResult().toStdString() ) { wellBoreWallCurveData( resAddr, timeStepIndex, frameIndex, values ); } else if ( resAddr.fieldName == RiaResultNames::wbsPPResult().toStdString() || resAddr.fieldName == RiaResultNames::wbsOBGResult().toStdString() || resAddr.fieldName == RiaResultNames::wbsSHResult().toStdString() ) { wellPathScaledCurveData( resAddr, timeStepIndex, frameIndex, values ); values->front() = wbsCurveValuesAtMsl(); } else if ( resAddr.fieldName == RiaResultNames::wbsAzimuthResult().toStdString() || resAddr.fieldName == RiaResultNames::wbsInclinationResult().toStdString() ) { wellPathAngles( resAddr, values ); } else if ( resAddr.fieldName == RiaResultNames::wbsSHMkResult().toStdString() ) { wellBoreSH_MatthewsKelly( timeStepIndex, frameIndex, values ); values->front() = wbsCurveValuesAtMsl(); } else { // Plotting parameters as curves RigWbsParameter param; if ( RigWbsParameter::findParameter( QString::fromStdString( resAddr.fieldName ), ¶m ) ) { if ( param == RigWbsParameter::FG_Shale() ) { wellBoreFGShale( timeStepIndex, frameIndex, values ); } else { if ( param == RigWbsParameter::OBG0() ) { frameIndex = 0; } calculateWbsParameterForAllSegments( param, timeStepIndex, frameIndex, values, true ); if ( param == RigWbsParameter::UCS() ) // UCS is reported as UCS/100 { for ( double& value : *values ) { if ( isValid( value ) ) value /= 100.0; } return RiaWellLogUnitTools::barX100UnitString(); } else if ( param == RigWbsParameter::DF() || param == RigWbsParameter::poissonRatio() ) { return RiaWellLogUnitTools::noUnitString(); } } } } return RiaWellLogUnitTools::sg_emwUnitString(); } else if ( resAddr.isValid() ) { RigFemResultAddress convResAddr = resAddr; // When showing POR results, always use the element nodal result, // to get correct handling of elements without POR results if ( convResAddr.fieldName == "POR-Bar" ) convResAddr.resultPosType = RIG_ELEMENT_NODAL; CVF_ASSERT( resAddr.resultPosType != RIG_WELLPATH_DERIVED ); const std::vector& resultValues = m_caseData->femPartResults()->resultValues( convResAddr, 0, timeStepIndex, frameIndex ); if ( !resultValues.empty() ) { std::vector interfaceValues = interpolateInterfaceValues( convResAddr, timeStepIndex, frameIndex, resultValues ); values->resize( interfaceValues.size(), std::numeric_limits::infinity() ); #pragma omp parallel for for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast( intersections().size() ); ++intersectionIdx ) { ( *values )[intersectionIdx] = static_cast( interfaceValues[intersectionIdx] ); } } } return RiaWellLogUnitTools::barUnitString(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RigGeoMechWellLogExtractor::calculateWbsParameterForAllSegments( const RigWbsParameter& parameter, WbsParameterSource primarySource, int timeStepIndex, int frameIndex, std::vector* outputValues, bool allowNormalization ) { RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults(); std::vector finalSourcesPerSegment( intersections().size(), RigWbsParameter::UNDEFINED ); if ( primarySource == RigWbsParameter::UNDEFINED ) { return finalSourcesPerSegment; } bool isPPResResult = parameter == RigWbsParameter::PP_Reservoir(); bool isPPresult = isPPResResult || parameter == RigWbsParameter::PP_NonReservoir(); std::vector allSources = parameter.sources(); auto primary_it = std::find( allSources.begin(), allSources.end(), primarySource ); CVF_ASSERT( primary_it != allSources.end() ); std::vector gridValues; if ( std::find( allSources.begin(), allSources.end(), RigWbsParameter::GRID ) != allSources.end() || parameter == RigWbsParameter::PP_Reservoir() ) { RigFemResultAddress nativeAddr = parameter.femAddress( RigWbsParameter::GRID ); const std::vector& unscaledResultValues = resultCollection->resultValues( nativeAddr, 0, timeStepIndex, frameIndex ); std::vector interpolatedInterfaceValues = interpolateInterfaceValues( nativeAddr, timeStepIndex, frameIndex, unscaledResultValues ); gridValues.resize( intersections().size(), std::numeric_limits::infinity() ); #pragma omp parallel for for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast( intersections().size() ); ++intersectionIdx ) { float averageUnscaledValue = std::numeric_limits::infinity(); averageIntersectionValuesToSegmentValue( intersectionIdx, interpolatedInterfaceValues, std::numeric_limits::infinity(), &averageUnscaledValue ); gridValues[intersectionIdx] = static_cast( averageUnscaledValue ); } } const std::vector>& lasFileValues = m_lasFileValues.at( parameter ); const double& userDefinedValue = m_userDefinedValues.at( parameter ); std::vector elementPropertyValues; if ( std::find( allSources.begin(), allSources.end(), RigWbsParameter::ELEMENT_PROPERTY_TABLE ) != allSources.end() ) { const std::vector* elementPropertyValuesInput = nullptr; std::vector tvdRKBs; for ( double tvdValue : cellIntersectionTVDs() ) { tvdRKBs.push_back( tvdValue + m_wellPathGeometry->rkbDiff() ); } RigFemResultAddress elementPropertyAddr = parameter.femAddress( RigWbsParameter::ELEMENT_PROPERTY_TABLE ); elementPropertyValuesInput = &( resultCollection->resultValues( elementPropertyAddr, 0, timeStepIndex, frameIndex ) ); if ( elementPropertyValuesInput ) { RiaWellLogUnitTools::convertValues( tvdRKBs, *elementPropertyValuesInput, &elementPropertyValues, parameter.units( RigWbsParameter::ELEMENT_PROPERTY_TABLE ), parameterInputUnits( parameter ) ); } } std::vector unscaledValues( intersections().size(), std::numeric_limits::infinity() ); double waterDensityGCM3 = m_userDefinedValues[RigWbsParameter::waterDensity()]; for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast( intersections().size() ); ++intersectionIdx ) { // Loop from primary source and out for each value for ( auto it = primary_it; it != allSources.end(); ++it ) { if ( *it == RigWbsParameter::GRID ) // Priority 0: Grid { if ( intersectionIdx < static_cast( gridValues.size() ) && gridValues[intersectionIdx] != std::numeric_limits::infinity() ) { unscaledValues[intersectionIdx] = gridValues[intersectionIdx]; finalSourcesPerSegment[intersectionIdx] = RigWbsParameter::GRID; break; } } else if ( *it == RigWbsParameter::LAS_FILE ) // Priority 1: Las-file value { if ( !lasFileValues.empty() ) { double lasValue = getWellLogIntersectionValue( intersectionIdx, lasFileValues ); // Only accept las-values for PP_reservoir if the grid result is valid bool validLasRegion = true; if ( isPPResResult ) { validLasRegion = intersectionIdx < static_cast( gridValues.size() ) && gridValues[intersectionIdx] != std::numeric_limits::infinity(); } if ( validLasRegion && lasValue != std::numeric_limits::infinity() ) { unscaledValues[intersectionIdx] = lasValue; finalSourcesPerSegment[intersectionIdx] = RigWbsParameter::LAS_FILE; break; } } } else if ( *it == RigWbsParameter::ELEMENT_PROPERTY_TABLE ) // Priority 2: Element property table value { if ( !elementPropertyValues.empty() ) { size_t elmIdx = intersectedCellsGlobIdx()[intersectionIdx]; if ( elmIdx < elementPropertyValues.size() ) { unscaledValues[intersectionIdx] = elementPropertyValues[elmIdx]; finalSourcesPerSegment[intersectionIdx] = RigWbsParameter::ELEMENT_PROPERTY_TABLE; break; } } } else if ( *it == RigWbsParameter::HYDROSTATIC && isPPresult ) { unscaledValues[intersectionIdx] = userDefinedValue * hydroStaticPorePressureForIntersection( intersectionIdx, waterDensityGCM3 ); finalSourcesPerSegment[intersectionIdx] = RigWbsParameter::HYDROSTATIC; break; } else if ( *it == RigWbsParameter::USER_DEFINED ) { unscaledValues[intersectionIdx] = userDefinedValue; finalSourcesPerSegment[intersectionIdx] = RigWbsParameter::USER_DEFINED; break; } } } if ( allowNormalization && parameter.normalizeByHydrostaticPP() ) { outputValues->resize( unscaledValues.size(), std::numeric_limits::infinity() ); #pragma omp parallel for for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast( intersections().size() ); ++intersectionIdx ) { RigWbsParameter::Source source = finalSourcesPerSegment[intersectionIdx]; if ( source == RigWbsParameter::ELEMENT_PROPERTY_TABLE || source == RigWbsParameter::GRID ) { ( *outputValues )[intersectionIdx] = unscaledValues[intersectionIdx] / hydroStaticPorePressureForSegment( intersectionIdx ); } else { ( *outputValues )[intersectionIdx] = unscaledValues[intersectionIdx] / hydroStaticPorePressureForIntersection( intersectionIdx ); } } } else { outputValues->swap( unscaledValues ); } return finalSourcesPerSegment; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RigGeoMechWellLogExtractor::calculateWbsParameterForAllSegments( const RigWbsParameter& parameter, int timeStepIndex, int frameIndex, std::vector* outputValues, bool allowNormalization ) { return calculateWbsParameterForAllSegments( parameter, m_parameterSources.at( parameter ), timeStepIndex, frameIndex, outputValues, allowNormalization ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RigGeoMechWellLogExtractor::calculateWbsParametersForAllSegments( const RigFemResultAddress& resAddr, int timeStepIndex, int frameIndex, std::vector* values, bool allowNormalization ) { CVF_ASSERT( values ); RigWbsParameter param; if ( !RigWbsParameter::findParameter( QString::fromStdString( resAddr.fieldName ), ¶m ) ) { CVF_ASSERT( false && "wbsParameters() called on something that isn't a wbs parameter" ); } return calculateWbsParameterForAllSegments( param, m_userDefinedValues.at( param ), frameIndex, values, allowNormalization ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigGeoMechWellLogExtractor::wellPathAngles( const RigFemResultAddress& resAddr, std::vector* values ) { CVF_ASSERT( values ); CVF_ASSERT( resAddr.fieldName == "Azimuth" || resAddr.fieldName == "Inclination" ); values->resize( intersections().size(), 0.0f ); const double epsilon = 1.0e-6 * 360; const cvf::Vec3d trueNorth( 0.0, 1.0, 0.0 ); const cvf::Vec3d up( 0.0, 0.0, 1.0 ); double previousAzimuth = 0.0; for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast( intersections().size() ); ++intersectionIdx ) { cvf::Vec3d wellPathTangent = calculateWellPathTangent( intersectionIdx, TangentFollowWellPathSegments ); // Deviation from vertical. Since well path is tending downwards we compare with negative z. double inclination = cvf::Math::toDegrees( std::acos( cvf::Vec3d( 0.0, 0.0, -1.0 ) * wellPathTangent.getNormalized() ) ); if ( resAddr.fieldName == "Azimuth" ) { double azimuth = HUGE_VAL; // Azimuth is not defined when well path is vertical. We define it as infinite to avoid it showing up in the // plot. if ( cvf::Math::valueInRange( inclination, epsilon, 180.0 - epsilon ) ) { cvf::Vec3d projectedTangentXY = wellPathTangent; projectedTangentXY.z() = 0.0; // Do tangentXY to true north for clockwise angles. double dotProduct = projectedTangentXY * trueNorth; double crossProduct = ( projectedTangentXY ^ trueNorth ) * up; // http://www.glossary.oilfield.slb.com/Terms/a/azimuth.aspx azimuth = cvf::Math::toDegrees( std::atan2( crossProduct, dotProduct ) ); if ( azimuth < 0.0 ) { // Straight atan2 gives angle from -PI to PI yielding angles from -180 to 180 // where the negative angles are counter clockwise. // To get all positive clockwise angles, we add 360 degrees to negative angles. azimuth = azimuth + 360.0; } } // Make azimuth continuous in most cases if ( azimuth - previousAzimuth > 300.0 ) { azimuth -= 360.0; } else if ( previousAzimuth - azimuth > 300.0 ) { azimuth += 360.0; } ( *values )[intersectionIdx] = azimuth; previousAzimuth = azimuth; } else { ( *values )[intersectionIdx] = inclination; } } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RigGeoMechWellLogExtractor::wellPathScaledCurveData( const RigFemResultAddress& resAddr, int timeStepIndex, int frameIndex, std::vector* values, bool forceGridSourceForPPReservoir /*=false*/ ) { CVF_ASSERT( values ); values->resize( intersections().size(), std::numeric_limits::infinity() ); std::vector sources( intersections().size(), RigWbsParameter::UNDEFINED ); if ( resAddr.fieldName == RiaResultNames::wbsPPResult().toStdString() ) { // Las or element property table values std::vector ppSandValues( intersections().size(), std::numeric_limits::infinity() ); std::vector ppShaleValues( intersections().size(), std::numeric_limits::infinity() ); std::vector ppSandSources; if ( forceGridSourceForPPReservoir ) { ppSandSources = calculateWbsParameterForAllSegments( RigWbsParameter::PP_Reservoir(), RigWbsParameter::GRID, frameIndex, &ppSandValues, true ); } else { ppSandSources = calculateWbsParameterForAllSegments( RigWbsParameter::PP_Reservoir(), timeStepIndex, frameIndex, &ppSandValues, true ); } std::vector ppShaleSources = calculateWbsParameterForAllSegments( RigWbsParameter::PP_NonReservoir(), 0, 0, &ppShaleValues, true ); #pragma omp parallel for for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast( intersections().size() ); ++intersectionIdx ) { if ( ( *values )[intersectionIdx] == std::numeric_limits::infinity() ) { if ( ppSandValues[intersectionIdx] != std::numeric_limits::infinity() ) { ( *values )[intersectionIdx] = ppSandValues[intersectionIdx]; sources[intersectionIdx] = ppSandSources[intersectionIdx]; } else if ( ppShaleValues[intersectionIdx] != std::numeric_limits::infinity() ) { ( *values )[intersectionIdx] = ppShaleValues[intersectionIdx]; sources[intersectionIdx] = ppShaleSources[intersectionIdx]; } else { ( *values )[intersectionIdx] = 1.0; sources[intersectionIdx] = RigWbsParameter::HYDROSTATIC; } } } } else if ( resAddr.fieldName == RiaResultNames::wbsOBGResult().toStdString() ) { sources = calculateWbsParameterForAllSegments( RigWbsParameter::OBG(), timeStepIndex, frameIndex, values, true ); } else { sources = calculateWbsParameterForAllSegments( RigWbsParameter::SH(), timeStepIndex, frameIndex, values, true ); } return sources; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigGeoMechWellLogExtractor::wellBoreWallCurveData( const RigFemResultAddress& resAddr, int timeStepIndex, int frameIndex, std::vector* values ) { CVF_ASSERT( values ); CVF_ASSERT( resAddr.fieldName == RiaResultNames::wbsFGResult().toStdString() || resAddr.fieldName == RiaResultNames::wbsSFGResult().toStdString() ); // The result addresses needed RigFemResultAddress stressResAddr( RIG_ELEMENT_NODAL, "ST", "" ); RigFemResultAddress porBarResAddr( RIG_ELEMENT_NODAL, "POR-Bar", "" ); RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults(); // Load results std::vector vertexStressesFloat = resultCollection->tensors( stressResAddr, 0, timeStepIndex, frameIndex ); if ( !vertexStressesFloat.size() ) return; std::vector vertexStresses; vertexStresses.reserve( vertexStressesFloat.size() ); for ( const caf::Ten3f& floatTensor : vertexStressesFloat ) { vertexStresses.push_back( caf::Ten3d( floatTensor ) ); } std::vector interpolatedInterfaceStressBar = interpolateInterfaceValues( stressResAddr, timeStepIndex, frameIndex, vertexStresses ); values->resize( intersections().size(), std::numeric_limits::infinity() ); std::vector ppSandAllSegments( intersections().size(), std::numeric_limits::infinity() ); std::vector ppSources = calculateWbsParameterForAllSegments( RigWbsParameter::PP_Reservoir(), RigWbsParameter::GRID, frameIndex, &ppSandAllSegments, false ); std::vector poissonAllSegments( intersections().size(), std::numeric_limits::infinity() ); calculateWbsParameterForAllSegments( RigWbsParameter::poissonRatio(), timeStepIndex, frameIndex, &poissonAllSegments, false ); std::vector ucsAllSegments( intersections().size(), std::numeric_limits::infinity() ); calculateWbsParameterForAllSegments( RigWbsParameter::UCS(), timeStepIndex, frameIndex, &ucsAllSegments, false ); #pragma omp parallel for for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast( intersections().size() ); ++intersectionIdx ) { // FG is for sands, SFG for shale. Sands has valid PP, shale does not. bool isFGregion = ppSources[intersectionIdx] == RigWbsParameter::GRID; double hydroStaticPorePressureBar = hydroStaticPorePressureForSegment( intersectionIdx ); double porePressureBar = ppSandAllSegments[intersectionIdx]; if ( porePressureBar == std::numeric_limits::infinity() ) { porePressureBar = hydroStaticPorePressureBar; } double poissonRatio = poissonAllSegments[intersectionIdx]; double ucsBar = ucsAllSegments[intersectionIdx]; caf::Ten3d segmentStress; bool validSegmentStress = averageIntersectionValuesToSegmentValue( intersectionIdx, interpolatedInterfaceStressBar, caf::Ten3d::invalid(), &segmentStress ); cvf::Vec3d wellPathTangent = calculateWellPathTangent( intersectionIdx, TangentConstantWithinCell ); caf::Ten3d wellPathStressFloat = transformTensorToWellPathOrientation( wellPathTangent, segmentStress ); caf::Ten3d wellPathStressDouble( wellPathStressFloat ); RigGeoMechBoreHoleStressCalculator sigmaCalculator( wellPathStressDouble, porePressureBar, poissonRatio, ucsBar, 32 ); double resultValue = std::numeric_limits::infinity(); if ( resAddr.fieldName == RiaResultNames::wbsFGResult().toStdString() ) { if ( isFGregion && validSegmentStress ) { resultValue = sigmaCalculator.solveFractureGradient(); } } else { CVF_ASSERT( resAddr.fieldName == RiaResultNames::wbsSFGResult().toStdString() ); if ( !isFGregion && validSegmentStress ) { resultValue = sigmaCalculator.solveStassiDalia(); } } if ( resultValue != std::numeric_limits::infinity() ) { if ( hydroStaticPorePressureBar > 1.0e-8 ) { resultValue /= hydroStaticPorePressureBar; } } ( *values )[intersectionIdx] = resultValue; } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigGeoMechWellLogExtractor::wellBoreFGShale( int timeStepIndex, int frameIndex, std::vector* values ) { if ( values->empty() ) values->resize( intersections().size(), std::numeric_limits::infinity() ); WbsParameterSource source = m_parameterSources.at( RigWbsParameter::FG_Shale() ); if ( source == RigWbsParameter::DERIVED_FROM_K0FG ) { std::vector PP0; // results std::vector K0_FG, OBG0; // parameters RigFemResultAddress ppAddr( RIG_WELLPATH_DERIVED, RiaResultNames::wbsPPResult().toStdString(), "" ); wellPathScaledCurveData( ppAddr, 0, 0, &PP0, true ); calculateWbsParameterForAllSegments( RigWbsParameter::K0_FG(), timeStepIndex, frameIndex, &K0_FG, true ); calculateWbsParameterForAllSegments( RigWbsParameter::OBG0(), 0, 0, &OBG0, true ); #pragma omp parallel for for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast( intersections().size() ); ++intersectionIdx ) { if ( !isValid( ( *values )[intersectionIdx] ) ) { if ( isValid( PP0[intersectionIdx] ) && isValid( OBG0[intersectionIdx] ) && isValid( K0_FG[intersectionIdx] ) ) { ( *values )[intersectionIdx] = ( K0_FG[intersectionIdx] * ( OBG0[intersectionIdx] - PP0[intersectionIdx] ) + PP0[intersectionIdx] ); } } } } else { std::vector SH; calculateWbsParameterForAllSegments( RigWbsParameter::SH(), timeStepIndex, frameIndex, &SH, true ); CVF_ASSERT( SH.size() == intersections().size() ); double multiplier = m_userDefinedValues.at( RigWbsParameter::FG_Shale() ); CVF_ASSERT( multiplier != std::numeric_limits::infinity() ); #pragma omp parallel for for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast( intersections().size() ); ++intersectionIdx ) { if ( !isValid( ( *values )[intersectionIdx] ) ) { if ( isValid( SH[intersectionIdx] ) ) { ( *values )[intersectionIdx] = SH[intersectionIdx] * multiplier; } } } } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigGeoMechWellLogExtractor::wellBoreSH_MatthewsKelly( int timeStepIndex, int frameIndex, std::vector* values ) { std::vector PP, PP0; // results std::vector K0_SH, OBG0, DF; // parameters RigFemResultAddress ppAddr( RIG_WELLPATH_DERIVED, RiaResultNames::wbsPPResult().toStdString(), "" ); curveData( ppAddr, timeStepIndex, frameIndex, &PP ); curveData( ppAddr, 0, 0, &PP0 ); calculateWbsParameterForAllSegments( RigWbsParameter::K0_SH(), timeStepIndex, frameIndex, &K0_SH, true ); calculateWbsParameterForAllSegments( RigWbsParameter::OBG0(), 0, 0, &OBG0, true ); calculateWbsParameterForAllSegments( RigWbsParameter::DF(), timeStepIndex, frameIndex, &DF, true ); values->resize( intersections().size(), std::numeric_limits::infinity() ); #pragma omp parallel for for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast( intersections().size() ); ++intersectionIdx ) { if ( isValid( PP[intersectionIdx] ) && isValid( PP0[intersectionIdx] ) && isValid( OBG0[intersectionIdx] ) && isValid( K0_SH[intersectionIdx] ) && isValid( DF[intersectionIdx] ) ) { ( *values )[intersectionIdx] = ( K0_SH[intersectionIdx] * ( OBG0[intersectionIdx] - PP0[intersectionIdx] ) + PP0[intersectionIdx] + DF[intersectionIdx] * ( PP[intersectionIdx] - PP0[intersectionIdx] ) ); } } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const RigGeoMechCaseData* RigGeoMechWellLogExtractor::caseData() { return m_caseData.p(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigGeoMechWellLogExtractor::setWbsLasValues( const RigWbsParameter& parameter, const std::vector>& values ) { m_lasFileValues[parameter] = values; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigGeoMechWellLogExtractor::setWbsParametersSource( RigWbsParameter parameter, WbsParameterSource source ) { m_parameterSources[parameter] = source; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigGeoMechWellLogExtractor::setWbsUserDefinedValue( RigWbsParameter parameter, double userDefinedValue ) { m_userDefinedValues[parameter] = userDefinedValue; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- QString RigGeoMechWellLogExtractor::parameterInputUnits( const RigWbsParameter& parameter ) { if ( parameter == RigWbsParameter::PP_NonReservoir() || parameter == RigWbsParameter::PP_Reservoir() || parameter == RigWbsParameter::UCS() ) { return RiaWellLogUnitTools::barUnitString(); } else if ( parameter == RigWbsParameter::poissonRatio() || parameter == RigWbsParameter::DF() ) { return RiaWellLogUnitTools::noUnitString(); } else if ( parameter == RigWbsParameter::waterDensity() ) { return RiaWellLogUnitTools::gPerCm3UnitString(); } return RiaWellLogUnitTools::sg_emwUnitString(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RigGeoMechWellLogExtractor::porePressureSourceRegions( int timeStepIndex, int frameIndex ) { RigFemResultAddress ppResAddr( RIG_ELEMENT_NODAL, RiaResultNames::wbsPPResult().toStdString(), "" ); std::vector values; std::vector sources = wellPathScaledCurveData( ppResAddr, timeStepIndex, frameIndex, &values ); std::vector doubleSources( sources.size(), 0.0 ); #pragma omp parallel for for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast( intersections().size() ); ++intersectionIdx ) { doubleSources[intersectionIdx] = static_cast( sources[intersectionIdx] ); } return doubleSources; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RigGeoMechWellLogExtractor::poissonSourceRegions( int timeStepIndex, int frameIndex ) { std::vector outputValues; std::vector sources = calculateWbsParameterForAllSegments( RigWbsParameter::poissonRatio(), timeStepIndex, frameIndex, &outputValues, false ); std::vector doubleSources( sources.size(), 0.0 ); #pragma omp parallel for for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast( intersections().size() ); ++intersectionIdx ) { doubleSources[intersectionIdx] = static_cast( sources[intersectionIdx] ); } return doubleSources; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RigGeoMechWellLogExtractor::ucsSourceRegions( int timeStepIndex, int frameIndex ) { std::vector outputValues; std::vector sources = calculateWbsParameterForAllSegments( RigWbsParameter::UCS(), timeStepIndex, frameIndex, &outputValues, true ); std::vector doubleSources( sources.size(), 0.0 ); #pragma omp parallel for for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast( intersections().size() ); ++intersectionIdx ) { doubleSources[intersectionIdx] = static_cast( sources[intersectionIdx] ); } return doubleSources; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- template T RigGeoMechWellLogExtractor::interpolateGridResultValue( RigFemResultPosEnum resultPosType, const std::vector& gridResultValues, int64_t intersectionIdx ) const { const RigFemPart* femPart = m_caseData->femParts()->part( 0 ); const std::vector& nodeCoords = femPart->nodes().coordinates; size_t elmIdx = intersectedCellsGlobIdx()[intersectionIdx]; RigElementType elmType = femPart->elementType( elmIdx ); if ( !( elmType == HEX8 || elmType == HEX8P ) ) return T(); if ( resultPosType == RIG_FORMATION_NAMES ) { resultPosType = RIG_ELEMENT_NODAL; // formation indices are stored per element node result. } if ( resultPosType == RIG_ELEMENT ) { return gridResultValues[elmIdx]; } cvf::StructGridInterface::FaceType cellFace = intersectedCellFaces()[intersectionIdx]; if ( cellFace == cvf::StructGridInterface::NO_FACE ) { if ( resultPosType == RIG_ELEMENT_NODAL_FACE ) { return std::numeric_limits::infinity(); // undefined value. ELEMENT_NODAL_FACE values are only defined on // a face. } // TODO: Should interpolate within the whole hexahedron. This requires converting to locals coordinates. // For now just pick the average value for the cell. size_t gridResultValueIdx = femPart->resultValueIdxFromResultPosType( resultPosType, static_cast( elmIdx ), 0 ); T sumOfVertexValues = gridResultValues[gridResultValueIdx]; for ( int i = 1; i < 8; ++i ) { gridResultValueIdx = femPart->resultValueIdxFromResultPosType( resultPosType, static_cast( elmIdx ), i ); sumOfVertexValues = sumOfVertexValues + gridResultValues[gridResultValueIdx]; } return sumOfVertexValues * ( 1.0 / 8.0 ); } int faceNodeCount = 0; const int* elementLocalIndicesForFace = RigFemTypes::localElmNodeIndicesForFace( elmType, cellFace, &faceNodeCount ); const int* elmNodeIndices = femPart->connectivities( elmIdx ); cvf::Vec3d v0( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[0]]] ); cvf::Vec3d v1( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[1]]] ); cvf::Vec3d v2( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[2]]] ); cvf::Vec3d v3( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[3]]] ); std::vector nodeResIdx( 4, cvf::UNDEFINED_SIZE_T ); for ( size_t i = 0; i < nodeResIdx.size(); ++i ) { if ( resultPosType == RIG_ELEMENT_NODAL_FACE ) { nodeResIdx[i] = gridResultIndexFace( elmIdx, cellFace, static_cast( i ) ); } else { nodeResIdx[i] = femPart->resultValueIdxFromResultPosType( resultPosType, static_cast( elmIdx ), elementLocalIndicesForFace[i] ); } } std::vector nodeResultValues; nodeResultValues.reserve( 4 ); for ( size_t i = 0; i < nodeResIdx.size(); ++i ) { nodeResultValues.push_back( gridResultValues[nodeResIdx[i]] ); } T interpolatedValue = cvf::GeometryTools::interpolateQuad( v0, nodeResultValues[0], v1, nodeResultValues[1], v2, nodeResultValues[2], v3, nodeResultValues[3], intersections()[intersectionIdx] ); return interpolatedValue; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- size_t RigGeoMechWellLogExtractor::gridResultIndexFace( size_t elementIdx, cvf::StructGridInterface::FaceType cellFace, int faceLocalNodeIdx ) const { CVF_ASSERT( cellFace != cvf::StructGridInterface::NO_FACE && faceLocalNodeIdx < 4 ); return elementIdx * 24 + static_cast( cellFace ) * 4 + faceLocalNodeIdx; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigGeoMechWellLogExtractor::calculateIntersection() { CVF_ASSERT( m_caseData->femParts()->partCount() == 1 ); std::map uniqueIntersections; const RigFemPart* femPart = m_caseData->femParts()->part( 0 ); const std::vector& nodeCoords = femPart->nodes().coordinates; for ( size_t wpp = 0; wpp < m_wellPathGeometry->wellPathPoints().size() - 1; ++wpp ) { std::vector intersections; cvf::Vec3d p1 = m_wellPathGeometry->wellPathPoints()[wpp]; cvf::Vec3d p2 = m_wellPathGeometry->wellPathPoints()[wpp + 1]; cvf::BoundingBox bb; bb.add( p1 ); bb.add( p2 ); std::vector closeCells = findCloseCells( bb ); cvf::Vec3d hexCorners[8]; for ( size_t ccIdx = 0; ccIdx < closeCells.size(); ++ccIdx ) { RigElementType elmType = femPart->elementType( closeCells[ccIdx] ); if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue; const int* cornerIndices = femPart->connectivities( closeCells[ccIdx] ); hexCorners[0] = cvf::Vec3d( nodeCoords[cornerIndices[0]] ); hexCorners[1] = cvf::Vec3d( nodeCoords[cornerIndices[1]] ); hexCorners[2] = cvf::Vec3d( nodeCoords[cornerIndices[2]] ); hexCorners[3] = cvf::Vec3d( nodeCoords[cornerIndices[3]] ); hexCorners[4] = cvf::Vec3d( nodeCoords[cornerIndices[4]] ); hexCorners[5] = cvf::Vec3d( nodeCoords[cornerIndices[5]] ); hexCorners[6] = cvf::Vec3d( nodeCoords[cornerIndices[6]] ); hexCorners[7] = cvf::Vec3d( nodeCoords[cornerIndices[7]] ); // int intersectionCount = RigHexIntersector::lineHexCellIntersection(p1, p2, hexCorners, // closeCells[ccIdx], &intersections); RigHexIntersectionTools::lineHexCellIntersection( p1, p2, hexCorners, closeCells[ccIdx], &intersections ); } // Now, with all the intersections of this piece of line, we need to // sort them in order, and set the measured depth and corresponding cell index // Inserting the intersections in this map will remove identical intersections // and sort them according to MD, CellIdx, Leave/enter double md1 = m_wellPathGeometry->measuredDepths()[wpp]; double md2 = m_wellPathGeometry->measuredDepths()[wpp + 1]; const double tolerance = 0.1; insertIntersectionsInMap( intersections, p1, md1, p2, md2, tolerance, &uniqueIntersections ); } this->populateReturnArrays( uniqueIntersections ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RigGeoMechWellLogExtractor::findCloseCells( const cvf::BoundingBox& bb ) { std::vector closeCells; if ( m_caseData->femParts()->partCount() ) { m_caseData->femParts()->part( 0 )->findIntersectingCells( bb, &closeCells ); } return closeCells; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::Vec3d RigGeoMechWellLogExtractor::calculateLengthInCell( size_t cellIndex, const cvf::Vec3d& startPoint, const cvf::Vec3d& endPoint ) const { std::array hexCorners; const RigFemPart* femPart = m_caseData->femParts()->part( 0 ); const std::vector& nodeCoords = femPart->nodes().coordinates; const int* cornerIndices = femPart->connectivities( cellIndex ); hexCorners[0] = cvf::Vec3d( nodeCoords[cornerIndices[0]] ); hexCorners[1] = cvf::Vec3d( nodeCoords[cornerIndices[1]] ); hexCorners[2] = cvf::Vec3d( nodeCoords[cornerIndices[2]] ); hexCorners[3] = cvf::Vec3d( nodeCoords[cornerIndices[3]] ); hexCorners[4] = cvf::Vec3d( nodeCoords[cornerIndices[4]] ); hexCorners[5] = cvf::Vec3d( nodeCoords[cornerIndices[5]] ); hexCorners[6] = cvf::Vec3d( nodeCoords[cornerIndices[6]] ); hexCorners[7] = cvf::Vec3d( nodeCoords[cornerIndices[7]] ); return RigWellPathIntersectionTools::calculateLengthInCell( hexCorners, startPoint, endPoint ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::Vec3d RigGeoMechWellLogExtractor::calculateWellPathTangent( int64_t intersectionIdx, WellPathTangentCalculation calculationType ) const { if ( calculationType == TangentFollowWellPathSegments ) { cvf::Vec3d segmentStart, segmentEnd; m_wellPathGeometry->twoClosestPoints( intersections()[intersectionIdx], &segmentStart, &segmentEnd ); return ( segmentEnd - segmentStart ).getNormalized(); } else { cvf::Vec3d wellPathTangent; if ( intersectionIdx % 2 == 0 ) { wellPathTangent = intersections()[intersectionIdx + 1] - intersections()[intersectionIdx]; } else { wellPathTangent = intersections()[intersectionIdx] - intersections()[intersectionIdx - 1]; } CVF_ASSERT( wellPathTangent.length() > 1.0e-7 ); return wellPathTangent.getNormalized(); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- caf::Ten3d RigGeoMechWellLogExtractor::transformTensorToWellPathOrientation( const cvf::Vec3d& wellPathTangent, const caf::Ten3d& tensor ) { // Create local coordinate system for well path segment cvf::Vec3d local_z = wellPathTangent; cvf::Vec3d local_x = local_z.perpendicularVector().getNormalized(); cvf::Vec3d local_y = ( local_z ^ local_x ).getNormalized(); // Calculate the rotation matrix from global i, j, k to local x, y, z. cvf::Mat4d rotationMatrix = cvf::Mat4d::fromCoordSystemAxes( &local_x, &local_y, &local_z ); return tensor.rotated( rotationMatrix.toMatrix3() ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::Vec3f RigGeoMechWellLogExtractor::cellCentroid( size_t intersectionIdx ) const { const RigFemPart* femPart = m_caseData->femParts()->part( 0 ); const std::vector& nodeCoords = femPart->nodes().coordinates; size_t elmIdx = intersectedCellsGlobIdx()[intersectionIdx]; RigElementType elmType = femPart->elementType( elmIdx ); int elementNodeCount = RigFemTypes::elementNodeCount( elmType ); const int* elmNodeIndices = femPart->connectivities( elmIdx ); cvf::Vec3f centroid( 0.0, 0.0, 0.0 ); for ( int i = 0; i < elementNodeCount; ++i ) { centroid += nodeCoords[elmNodeIndices[i]]; } return centroid / elementNodeCount; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigGeoMechWellLogExtractor::getWellLogIntersectionValue( size_t intersectionIdx, const std::vector>& wellLogValues ) const { const double eps = 1.0e-4; double intersection_md = cellIntersectionMDs()[intersectionIdx]; for ( size_t i = 0; i < wellLogValues.size() - 1; ++i ) { double las_md_i = wellLogValues[i].first; double las_md_ip1 = wellLogValues[i + 1].first; if ( cvf::Math::valueInRange( intersection_md, las_md_i, las_md_ip1 ) ) { double dist_i = std::abs( intersection_md - las_md_i ); double dist_ip1 = std::abs( intersection_md - las_md_ip1 ); if ( dist_i < eps ) { return wellLogValues[i].second; } else if ( dist_ip1 < eps ) { return wellLogValues[i + 1].second; } else { RiaWeightedMeanCalculator averageCalc; averageCalc.addValueAndWeight( wellLogValues[i].second, 1.0 / dist_i ); averageCalc.addValueAndWeight( wellLogValues[i + 1].second, 1.0 / dist_ip1 ); return averageCalc.weightedMean(); } } } // If we found no match, check first and last value within a threshold. if ( !wellLogValues.empty() ) { const double relativeEps = 1.0e-3 * std::max( 1.0, intersection_md ); if ( std::abs( wellLogValues.front().first - intersection_md ) < relativeEps ) { return wellLogValues.front().second; } else if ( std::abs( wellLogValues.back().first - intersection_md ) < relativeEps ) { return wellLogValues.back().second; } } return std::numeric_limits::infinity(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigGeoMechWellLogExtractor::pascalToBar( double pascalValue ) { return pascalValue * 1.0e-5; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- template bool RigGeoMechWellLogExtractor::averageIntersectionValuesToSegmentValue( size_t intersectionIdx, const std::vector& values, const T& invalidValue, T* averagedCellValue ) const { CVF_ASSERT( values.size() >= 2 ); *averagedCellValue = invalidValue; T value1, value2; cvf::Vec3d centroid( cellCentroid( intersectionIdx ) ); double dist1 = 0.0, dist2 = 0.0; if ( intersectionIdx % 2 == 0 ) { value1 = values[intersectionIdx]; value2 = values[intersectionIdx + 1]; dist1 = ( centroid - intersections()[intersectionIdx] ).length(); dist2 = ( centroid - intersections()[intersectionIdx + 1] ).length(); } else { value1 = values[intersectionIdx - 1]; value2 = values[intersectionIdx]; dist1 = ( centroid - intersections()[intersectionIdx - 1] ).length(); dist2 = ( centroid - intersections()[intersectionIdx] ).length(); } if ( invalidValue == value1 || invalidValue == value2 ) { return false; } RiaWeightedMeanCalculator averageCalc; averageCalc.addValueAndWeight( value1, dist2 ); averageCalc.addValueAndWeight( value2, dist1 ); if ( averageCalc.validAggregatedWeight() ) { *averagedCellValue = averageCalc.weightedMean(); } return true; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- template std::vector RigGeoMechWellLogExtractor::interpolateInterfaceValues( RigFemResultAddress nativeAddr, int timeStepIndex, int frameIndex, const std::vector& unscaledResultValues ) { std::vector interpolatedInterfaceValues; initializeResultValues( interpolatedInterfaceValues, intersections().size() ); const RigFemPart* femPart = m_caseData->femParts()->part( 0 ); #pragma omp parallel for for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast( intersections().size() ); ++intersectionIdx ) { size_t elmIdx = intersectedCellsGlobIdx()[intersectionIdx]; RigElementType elmType = femPart->elementType( elmIdx ); if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue; interpolatedInterfaceValues[intersectionIdx] = interpolateGridResultValue( nativeAddr.resultPosType, unscaledResultValues, intersectionIdx ); } return interpolatedInterfaceValues; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigGeoMechWellLogExtractor::initializeResultValues( std::vector& resultValues, size_t resultCount ) { resultValues.resize( resultCount, std::numeric_limits::infinity() ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigGeoMechWellLogExtractor::initializeResultValues( std::vector& resultValues, size_t resultCount ) { resultValues.resize( resultCount ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigGeoMechWellLogExtractor::smoothSegments( std::vector* mds, std::vector* tvds, std::vector* values, const std::vector& interfaceShValues, const std::vector& smoothSegments, const double smoothingThreshold ) { const double eps = 1.0e-6; double maxOriginalMd = ( *mds )[0]; double maxOriginalTvd = ( !tvds->empty() ) ? ( *tvds )[0] : 0.0; for ( int64_t i = 1; i < static_cast( mds->size() - 1 ); ++i ) { double originalMD = ( *mds )[i]; double originalTVD = ( !tvds->empty() ) ? ( *tvds )[i] : 0.0; bool smoothSegment = smoothSegments[i] != 0u; double diffMd = std::fabs( ( *mds )[i + 1] - ( *mds )[i] ) / std::max( eps, ( *mds )[i] ); double diffSh = std::fabs( interfaceShValues[i + 1] - interfaceShValues[i] ) / std::max( eps, interfaceShValues[i] ); bool leapSh = diffSh > smoothingThreshold && diffMd < eps; if ( smoothSegment ) { if ( leapSh ) { // Update depth of current if ( i == 1 ) { ( *mds )[i] = maxOriginalMd; if ( !tvds->empty() ) { ( *tvds )[i] = maxOriginalTvd; } } else { ( *mds )[i] = 0.5 * ( ( *mds )[i] + maxOriginalMd ); if ( !tvds->empty() ) { ( *tvds )[i] = 0.5 * ( ( *tvds )[i] + maxOriginalTvd ); } } } else { // Update depth of current ( *mds )[i] = ( *mds )[i - 1]; if ( !tvds->empty() ) { ( *tvds )[i] = ( *tvds )[i - 1]; } } double diffMd_m1 = std::fabs( ( *mds )[i] - ( *mds )[i - 1] ); if ( diffMd_m1 < ( *mds )[i] * eps && ( *values )[i - 1] != std::numeric_limits::infinity() ) { ( *values )[i] = ( *values )[i - 1]; } } if ( leapSh ) { maxOriginalMd = std::max( maxOriginalMd, originalMD ); maxOriginalTvd = std::max( maxOriginalTvd, originalTVD ); } } } //-------------------------------------------------------------------------------------------------- /// Note that this is unsigned char because std::vector is not thread safe //-------------------------------------------------------------------------------------------------- std::vector RigGeoMechWellLogExtractor::determineFilteringOrSmoothing( const std::vector& porePressures ) { std::vector smoothOrFilterSegments( porePressures.size(), false ); #pragma omp parallel for for ( int64_t i = 1; i < static_cast( porePressures.size() - 1 ); ++i ) { bool validPP_im1 = porePressures[i - 1] >= 0.0 && porePressures[i - 1] != std::numeric_limits::infinity(); bool validPP_i = porePressures[i] >= 0.0 && porePressures[i] != std::numeric_limits::infinity(); bool validPP_ip1 = porePressures[i + 1] >= 0.0 && porePressures[i + 1] != std::numeric_limits::infinity(); bool anyValidPP = validPP_im1 || validPP_i || validPP_ip1; smoothOrFilterSegments[i] = !anyValidPP; } return smoothOrFilterSegments; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigGeoMechWellLogExtractor::hydroStaticPorePressureForIntersection( size_t intersectionIdx, double waterDensityGCM3 ) const { double trueVerticalDepth = cellIntersectionTVDs()[intersectionIdx]; double effectiveDepthMeters = trueVerticalDepth + m_wellPathGeometry->rkbDiff(); return hydroStaticPorePressureAtDepth( effectiveDepthMeters, waterDensityGCM3 ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigGeoMechWellLogExtractor::hydroStaticPorePressureForSegment( size_t intersectionIdx, double waterDensityGCM3 ) const { cvf::Vec3f centroid = cellCentroid( intersectionIdx ); double trueVerticalDepth = -centroid.z(); double effectiveDepthMeters = trueVerticalDepth + m_wellPathGeometry->rkbDiff(); return hydroStaticPorePressureAtDepth( effectiveDepthMeters, waterDensityGCM3 ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigGeoMechWellLogExtractor::hydroStaticPorePressureAtDepth( double effectiveDepthMeters, double waterDensityGCM3 ) { double hydroStaticPorePressurePascal = effectiveDepthMeters * GRAVITY_ACCEL * waterDensityGCM3 * 1000; double hydroStaticPorePressureBar = pascalToBar( hydroStaticPorePressurePascal ); return hydroStaticPorePressureBar; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigGeoMechWellLogExtractor::wbsCurveValuesAtMsl() const { double waterDensityGCM3 = m_userDefinedValues.at( RigWbsParameter::waterDensity() ); double rkbDiff = m_wellPathGeometry->rkbDiff(); if ( rkbDiff == std::numeric_limits::infinity() ) { rkbDiff = 0.0; } if ( m_waterDepth + rkbDiff < 1.0e-8 ) { return waterDensityGCM3; } return waterDensityGCM3 * m_waterDepth / ( m_waterDepth + rkbDiff ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RigGeoMechWellLogExtractor::isValid( double value ) { return value != std::numeric_limits::infinity(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RigGeoMechWellLogExtractor::isValid( float value ) { return value != std::numeric_limits::infinity(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigGeoMechWellLogExtractor::calculateWaterDepth() const { // Need a well path with intersections to generate a precise water depth if ( cellIntersectionTVDs().empty() || m_wellPathGeometry->wellPathPoints().empty() ) { return std::numeric_limits::infinity(); } // Only calculate water depth if the well path starts outside the model. cvf::BoundingBox boundingBox = m_caseData->femParts()->boundingBox(); if ( boundingBox.contains( m_wellPathGeometry->wellPathPoints().front() ) ) { return std::numeric_limits::infinity(); } // Water depth is always the first intersection with model for geo mech models. double waterDepth = cellIntersectionTVDs().front(); return waterDepth; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigGeoMechWellLogExtractor::estimateWaterDepth() const { // Estimate water depth using bounding box. This will be imprecise // for models with a slanting top layer. cvf::BoundingBox boundingBox = m_caseData->femParts()->boundingBox(); return std::abs( boundingBox.max().z() ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigGeoMechWellLogExtractor::waterDepth() const { return m_waterDepth; }