///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) Statoil ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigVirtualPerforationTransmissibilities.h" #include "RigStatisticsMath.h" //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- CompletionDataFrame::CompletionDataFrame() { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void CompletionDataFrame::setCompletionData( const std::vector& completions ) { for ( auto& completion : completions ) { auto it = m_multipleCompletionsPerEclipseCell.find( completion.completionDataGridCell().globalCellIndex() ); if ( it != m_multipleCompletionsPerEclipseCell.end() ) { it->second.push_back( completion ); } else { m_multipleCompletionsPerEclipseCell.insert( std::pair>( completion.completionDataGridCell().globalCellIndex(), std::vector{ completion } ) ); } } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::map>& CompletionDataFrame::multipleCompletionsPerEclipseCell() const { return m_multipleCompletionsPerEclipseCell; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigVirtualPerforationTransmissibilities::RigVirtualPerforationTransmissibilities() { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigVirtualPerforationTransmissibilities::~RigVirtualPerforationTransmissibilities() { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigVirtualPerforationTransmissibilities::setCompletionDataForWellPath( const RimWellPath* wellPath, const std::vector>& completionsPerTimeStep ) { CVF_ASSERT( m_mapFromWellToCompletionData.find( wellPath ) == m_mapFromWellToCompletionData.end() ); { std::vector values; for ( const auto& c : completionsPerTimeStep ) { CompletionDataFrame oneTimeStep; oneTimeStep.setCompletionData( c ); values.push_back( oneTimeStep ); } auto pair = std::pair>( wellPath, values ); m_mapFromWellToCompletionData.insert( pair ); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::map>& RigVirtualPerforationTransmissibilities::multipleCompletionsPerEclipseCell( const RimWellPath* wellPath, size_t timeStepIndex ) const { static std::map> dummy; auto item = m_mapFromWellToCompletionData.find( wellPath ); if ( item != m_mapFromWellToCompletionData.end() ) { size_t indexToUse = timeStepIndex; if ( item->second.size() == 1 ) { indexToUse = 0; } return item->second[indexToUse].multipleCompletionsPerEclipseCell(); } return dummy; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigVirtualPerforationTransmissibilities::setCompletionDataForSimWell( const RigSimWellData* simWellData, const std::vector>& completionsPerTimeStep ) { m_mapFromSimWellToCompletionData[simWellData] = completionsPerTimeStep; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::vector& RigVirtualPerforationTransmissibilities::completionsForSimWell( const RigSimWellData* simWellData, size_t timeStepIndex ) const { static std::vector dummayVector; auto item = m_mapFromSimWellToCompletionData.find( simWellData ); if ( item != m_mapFromSimWellToCompletionData.end() ) { return item->second[timeStepIndex]; } return dummayVector; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigVirtualPerforationTransmissibilities::computeMinMax( double* minValue, double* maxValue, double* posClosestToZero, double* negClosestToZero ) const { MinMaxAccumulator minMaxAccumulator; PosNegAccumulator posNegAccumulator; for ( const auto& item : m_mapFromWellToCompletionData ) { auto dataForWellPath = item.second; for ( const auto& timeStepFrame : dataForWellPath ) { for ( const auto& allCompletionsForWell : timeStepFrame.multipleCompletionsPerEclipseCell() ) { for ( const auto& completionData : allCompletionsForWell.second ) { double transmissibility = completionData.transmissibility(); minMaxAccumulator.addValue( transmissibility ); posNegAccumulator.addValue( transmissibility ); } } } } for ( const auto& item : m_mapFromSimWellToCompletionData ) { auto dataForSimWell = item.second; for ( const auto& timeStepFrame : dataForSimWell ) { for ( const auto& completionData : timeStepFrame ) { double transmissibility = completionData.transmissibility(); minMaxAccumulator.addValue( transmissibility ); posNegAccumulator.addValue( transmissibility ); } } } if ( *minValue ) *minValue = minMaxAccumulator.min; if ( *maxValue ) *maxValue = minMaxAccumulator.max; if ( *posClosestToZero ) *posClosestToZero = posNegAccumulator.pos; if ( *negClosestToZero ) *negClosestToZero = posNegAccumulator.neg; }