///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2011- Statoil ASA // Copyright (C) 2013- Ceetron Solutions AS // Copyright (C) 2011-2012 Ceetron AS // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #pragma once #include "RifReaderInterface.h" #include "RiaDefines.h" #include "cvfCollection.h" #include #include #include class RifReaderInterface; class RigActiveCellInfo; class RigMainGrid; class RigResultInfo; class RigStatisticsDataCache; class RigTimeStepInfo; //================================================================================================== /// Class containing the results for the complete number of active cells. Both main grid and LGR's //================================================================================================== class RigCaseCellResultsData : public cvf::Object { public: explicit RigCaseCellResultsData(RigMainGrid* ownerGrid); void setMainGrid(RigMainGrid* ownerGrid); void setActiveCellInfo(RigActiveCellInfo* activeCellInfo) { m_activeCellInfo = activeCellInfo;} RigActiveCellInfo* activeCellInfo() { return m_activeCellInfo;} const RigActiveCellInfo* activeCellInfo() const { return m_activeCellInfo;} // Max and min values of the results void recalculateStatistics(size_t scalarResultIndex); void minMaxCellScalarValues(size_t scalarResultIndex, double& min, double& max); void minMaxCellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& min, double& max); void posNegClosestToZero(size_t scalarResultIndex, double& pos, double& neg); void posNegClosestToZero(size_t scalarResultIndex, size_t timeStepIndex, double& pos, double& neg); const std::vector& cellScalarValuesHistogram(size_t scalarResultIndex); const std::vector& cellScalarValuesHistogram(size_t scalarResultIndex, size_t timeStepIndex); void p10p90CellScalarValues(size_t scalarResultIndex, double& p10, double& p90); void p10p90CellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& p10, double& p90); void meanCellScalarValues(size_t scalarResultIndex, double& meanValue); void meanCellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& meanValue); const std::vector& uniqueCellScalarValues(size_t scalarResultIndex); void sumCellScalarValues(size_t scalarResultIndex, double& sumValue); void sumCellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& sumValue); // Access meta-information about the results size_t resultCount() const; size_t timeStepCount(size_t scalarResultIndex) const; size_t maxTimeStepCount(size_t* scalarResultIndex = NULL) const; QStringList resultNames(RiaDefines::ResultCatType type) const; bool isUsingGlobalActiveIndex(size_t scalarResultIndex) const; bool hasFlowDiagUsableFluxes() const; std::vector timeStepDates() const; QDateTime timeStepDate(size_t scalarResultIndex, size_t timeStepIndex) const; std::vector timeStepDates(size_t scalarResultIndex) const; std::vector daysSinceSimulationStart() const; std::vector daysSinceSimulationStart(size_t scalarResultIndex) const; int reportStepNumber(size_t scalarResultIndex, size_t timeStepIndex) const; std::vector reportStepNumbers(size_t scalarResultIndex) const; std::vector timeStepInfos(size_t scalarResultIndex) const; void setTimeStepInfos(size_t scalarResultIndex, const std::vector& timeStepInfos); // Find or create a slot for the results size_t findScalarResultIndex(RiaDefines::ResultCatType type, const QString& resultName) const; size_t findScalarResultIndex(const QString& resultName) const; size_t addEmptyScalarResult(RiaDefines::ResultCatType type, const QString& resultName, bool needsToBeStored); QString makeResultNameUnique(const QString& resultNameProposal) const; void createPlaceholderResultEntries(); void removeResult(const QString& resultName); void clearAllResults(); void freeAllocatedResultsData(); // Access the results data const std::vector< std::vector > & cellScalarResults(size_t scalarResultIndex) const; std::vector< std::vector > & cellScalarResults(size_t scalarResultIndex); std::vector& cellScalarResults(size_t scalarResultIndex, size_t timeStepIndex); static RifReaderInterface::PorosityModelResultType convertFromProjectModelPorosityModel(RiaDefines::PorosityModelType porosityModel); bool updateResultName(RiaDefines::ResultCatType resultType, QString& oldName, const QString& newName); public: const std::vector& infoForEachResultIndex() { return m_resultInfos;} bool mustBeCalculated(size_t scalarResultIndex) const; void setMustBeCalculated(size_t scalarResultIndex); public: size_t addStaticScalarResult(RiaDefines::ResultCatType type, const QString& resultName, bool needsToBeStored, size_t resultValueCount); bool findTransmissibilityResults(size_t& tranX, size_t& tranY, size_t& tranZ) const; private: std::vector< std::vector< std::vector > > m_cellScalarResults; ///< Scalar results on the complete reservoir for each Result index (ResultVariable) and timestep cvf::Collection m_statisticsDataCache; private: std::vector m_resultInfos; RigMainGrid* m_ownerMainGrid; RigActiveCellInfo* m_activeCellInfo; };