///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2017- Statoil ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigWellPathStimplanIntersector.h" #include "RigCellGeometryTools.h" #include "RigFractureCell.h" #include "RigFractureGrid.h" #include "RigWellPath.h" #include "RimFracture.h" #include "RimFractureTemplate.h" #include "RimSimWellFracture.h" #include "RimStimPlanFractureTemplate.h" #include "cvfMath.h" #include "cvfMatrix4.h" #include //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigWellPathStimplanIntersector::RigWellPathStimplanIntersector( gsl::not_null wellPathGeom, gsl::not_null rimFracture ) { std::vector wellPathPoints = wellPathGeom->wellPathPointsIncludingInterpolatedIntersectionPoint( rimFracture->fractureMD() ); cvf::Mat4d fractureXf = rimFracture->transformMatrix(); double wellRadius = rimFracture->wellRadius(); std::vector> fractureGridCellPolygons; { if ( rimFracture->fractureGrid() ) { const std::vector& stpCells = rimFracture->fractureGrid()->fractureCells(); for ( const auto& stpCell : stpCells ) { fractureGridCellPolygons.push_back( stpCell.getPolygon() ); } } } double perforationLength = rimFracture->perforationLength(); calculate( fractureXf, wellPathPoints, wellRadius, perforationLength, fractureGridCellPolygons, m_stimPlanCellIdxToIntersectionInfoMap ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::map& RigWellPathStimplanIntersector::intersections() const { return m_stimPlanCellIdxToIntersectionInfoMap; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigWellPathStimplanIntersector::calculate( const cvf::Mat4d& fractureXf, const std::vector& wellPathPointsDomainCoords, double wellRadius, double perforationLength, const std::vector>& fractureGridCellPolygons, std::map& m_stimPlanCellIdxToIntersectionInfoMap ) { cvf::Mat4d toFractureXf = fractureXf.getInverted(); std::vector perforationLengthBoundingBoxPolygon; { double cicleRadius = perforationLength / 2; int pointsInCirclePolygon = 20; for ( int i = 0; i < pointsInCirclePolygon; i++ ) { double x = cicleRadius * cvf::Math::cos( i * ( 2 * cvf::PI_D / pointsInCirclePolygon ) ); double y = cicleRadius * cvf::Math::sin( i * ( 2 * cvf::PI_D / pointsInCirclePolygon ) ); perforationLengthBoundingBoxPolygon.push_back( cvf::Vec3d( x, y, 0 ) ); } } // Convert well path to fracture template system std::vector fractureRelativeWellPathPoints; for ( const auto& wellPPoint : wellPathPointsDomainCoords ) { fractureRelativeWellPathPoints.push_back( wellPPoint.getTransformedPoint( toFractureXf ) ); } // Clip well path to fracture domain std::vector> wellPathPartsWithinFracture = RigCellGeometryTools::clipPolylineByPolygon( fractureRelativeWellPathPoints, perforationLengthBoundingBoxPolygon, RigCellGeometryTools::INTERPOLATE_LINE_Z ); // Remove the part of the well path that is more than well radius away from the fracture plane std::vector> intersectingWellPathParts; for ( const auto& part : wellPathPartsWithinFracture ) { std::vector currentIntersectingWpPart; for ( size_t vxIdx = 0; vxIdx < part.size() - 1; ++vxIdx ) { double thisAbsZ = fabs( part[vxIdx].z() ); double nextAbsZ = fabs( part[vxIdx + 1].z() ); double thisZ = part[vxIdx].z(); double nextZ = part[vxIdx + 1].z(); if ( thisAbsZ >= wellRadius && nextAbsZ >= wellRadius ) { if ( ( thisZ >= 0 && nextZ >= 0 ) || ( thisZ <= 0 && nextZ <= 0 ) ) { continue; // Outside } else // In and out { { double wellRadiusDistFromPlane = thisZ > 0 ? wellRadius : -wellRadius; double fraction = ( wellRadiusDistFromPlane - thisZ ) / ( nextZ - thisZ ); cvf::Vec3d intersectPoint = part[vxIdx] + fraction * ( part[vxIdx + 1] - part[vxIdx] ); currentIntersectingWpPart.push_back( intersectPoint ); } { double wellRadiusDistFromPlane = nextZ > 0 ? wellRadius : -wellRadius; double fraction = ( wellRadiusDistFromPlane - thisZ ) / ( nextZ - thisZ ); cvf::Vec3d intersectPoint = part[vxIdx] + fraction * ( part[vxIdx + 1] - part[vxIdx] ); currentIntersectingWpPart.push_back( intersectPoint ); intersectingWellPathParts.push_back( currentIntersectingWpPart ); currentIntersectingWpPart.clear(); } continue; } } if ( thisAbsZ < wellRadius && nextAbsZ < wellRadius ) // Inside { currentIntersectingWpPart.push_back( part[vxIdx] ); continue; } if ( thisAbsZ < wellRadius && nextAbsZ >= wellRadius ) // Going out { currentIntersectingWpPart.push_back( part[vxIdx] ); double wellRadiusDistFromPlane = nextZ > 0 ? wellRadius : -wellRadius; double fraction = ( wellRadiusDistFromPlane - thisZ ) / ( nextZ - thisZ ); cvf::Vec3d intersectPoint = part[vxIdx] + fraction * ( part[vxIdx + 1] - part[vxIdx] ); currentIntersectingWpPart.push_back( intersectPoint ); intersectingWellPathParts.push_back( currentIntersectingWpPart ); currentIntersectingWpPart.clear(); continue; } if ( thisAbsZ >= wellRadius && nextAbsZ < wellRadius ) // Going in { double wellRadiusDistFromPlane = thisZ > 0 ? wellRadius : -wellRadius; double fraction = ( wellRadiusDistFromPlane - thisZ ) / ( nextZ - thisZ ); cvf::Vec3d intersectPoint = part[vxIdx] + fraction * ( part[vxIdx + 1] - part[vxIdx] ); currentIntersectingWpPart.push_back( intersectPoint ); continue; } } // Add last point if it is within the radius if ( part.size() > 1 && fabs( part.back().z() ) < wellRadius ) { currentIntersectingWpPart.push_back( part.back() ); } if ( !currentIntersectingWpPart.empty() ) { intersectingWellPathParts.push_back( currentIntersectingWpPart ); } } // Find the StimPlan cells touched by the intersecting well path parts for ( size_t cIdx = 0; cIdx < fractureGridCellPolygons.size(); ++cIdx ) { const std::vector& cellPolygon = fractureGridCellPolygons[cIdx]; for ( const auto& wellpathPart : intersectingWellPathParts ) { std::vector> wellPathPartsInPolygon = RigCellGeometryTools::clipPolylineByPolygon( wellpathPart, cellPolygon, RigCellGeometryTools::USE_HUGEVAL ); for ( const auto& wellPathPartInCell : wellPathPartsInPolygon ) { if ( !wellPathPartInCell.empty() ) { int endpointCount = 0; if ( wellPathPartInCell.front().z() != HUGE_VAL ) ++endpointCount; if ( wellPathPartInCell.back().z() != HUGE_VAL ) ++endpointCount; cvf::Vec3d intersectionLength = ( wellPathPartInCell.back() - wellPathPartInCell.front() ); double xLengthInCell = fabs( intersectionLength.x() ); double yLengthInCell = fabs( intersectionLength.y() ); m_stimPlanCellIdxToIntersectionInfoMap[cIdx].endpointCount += endpointCount; m_stimPlanCellIdxToIntersectionInfoMap[cIdx].hlength += xLengthInCell; m_stimPlanCellIdxToIntersectionInfoMap[cIdx].vlength += yLengthInCell; } } } } }