///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2020- Equinor ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigFemPartResultCalculatorSurfaceAlignedStress.h" #include "RigFemPart.h" #include "RigFemPartCollection.h" #include "RigFemPartResultsCollection.h" #include "RigFemResultAddress.h" #include "RigFemScalarResultFrames.h" #include "cvfGeometryTools.h" #include "cafProgressInfo.h" #include //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigFemPartResultCalculatorSurfaceAlignedStress::RigFemPartResultCalculatorSurfaceAlignedStress( RigFemPartResultsCollection& collection ) : RigFemPartResultCalculator( collection ) { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigFemPartResultCalculatorSurfaceAlignedStress::~RigFemPartResultCalculatorSurfaceAlignedStress() { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RigFemPartResultCalculatorSurfaceAlignedStress::isMatching( const RigFemResultAddress& resVarAddr ) const { return ( resVarAddr.resultPosType == RIG_ELEMENT_NODAL_FACE && resVarAddr.componentName != "Pazi" && resVarAddr.componentName != "Pinc" && !resVarAddr.componentName.empty() ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigFemScalarResultFrames* RigFemPartResultCalculatorSurfaceAlignedStress::calculate( int partIndex, const RigFemResultAddress& resVarAddr ) { CVF_ASSERT( resVarAddr.componentName == "STH" || resVarAddr.componentName == "STQV" || resVarAddr.componentName == "SN" || resVarAddr.componentName == "TPH" || resVarAddr.componentName == "TPQV" || resVarAddr.componentName == "THQV" || resVarAddr.componentName == "TP" || resVarAddr.componentName == "TPinc" || resVarAddr.componentName == "FAULTMOB" || resVarAddr.componentName == "PCRIT" ); caf::ProgressInfo frameCountProgress( m_resultCollection->frameCount() * 7, "" ); frameCountProgress.setProgressDescription( "Calculating " + QString::fromStdString( resVarAddr.fieldName + ": " + resVarAddr.componentName ) ); frameCountProgress.setNextProgressIncrement( m_resultCollection->frameCount() ); RigFemScalarResultFrames* s11Frames = m_resultCollection->findOrLoadScalarResult( partIndex, RigFemResultAddress( RIG_ELEMENT_NODAL, resVarAddr.fieldName, "S11" ) ); frameCountProgress.incrementProgress(); frameCountProgress.setNextProgressIncrement( m_resultCollection->frameCount() ); RigFemScalarResultFrames* s22Frames = m_resultCollection->findOrLoadScalarResult( partIndex, RigFemResultAddress( RIG_ELEMENT_NODAL, resVarAddr.fieldName, "S22" ) ); frameCountProgress.incrementProgress(); frameCountProgress.setNextProgressIncrement( m_resultCollection->frameCount() ); RigFemScalarResultFrames* s33Frames = m_resultCollection->findOrLoadScalarResult( partIndex, RigFemResultAddress( RIG_ELEMENT_NODAL, resVarAddr.fieldName, "S33" ) ); frameCountProgress.incrementProgress(); frameCountProgress.setNextProgressIncrement( m_resultCollection->frameCount() ); RigFemScalarResultFrames* s12Frames = m_resultCollection->findOrLoadScalarResult( partIndex, RigFemResultAddress( RIG_ELEMENT_NODAL, resVarAddr.fieldName, "S12" ) ); frameCountProgress.incrementProgress(); frameCountProgress.setNextProgressIncrement( m_resultCollection->frameCount() ); RigFemScalarResultFrames* s23Frames = m_resultCollection->findOrLoadScalarResult( partIndex, RigFemResultAddress( RIG_ELEMENT_NODAL, resVarAddr.fieldName, "S23" ) ); frameCountProgress.incrementProgress(); frameCountProgress.setNextProgressIncrement( m_resultCollection->frameCount() ); RigFemScalarResultFrames* s13Frames = m_resultCollection->findOrLoadScalarResult( partIndex, RigFemResultAddress( RIG_ELEMENT_NODAL, resVarAddr.fieldName, "S13" ) ); RigFemScalarResultFrames* SNFrames = m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "SN" ) ); RigFemScalarResultFrames* STHFrames = m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "STH" ) ); RigFemScalarResultFrames* STQVFrames = m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "STQV" ) ); RigFemScalarResultFrames* TNHFrames = m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "TPH" ) ); RigFemScalarResultFrames* TNQVFrames = m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "TPQV" ) ); RigFemScalarResultFrames* THQVFrames = m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "THQV" ) ); RigFemScalarResultFrames* TPFrames = m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "TP" ) ); RigFemScalarResultFrames* TPincFrames = m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "TPinc" ) ); RigFemScalarResultFrames* FAULTMOBFrames = m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "FAULTMOB" ) ); RigFemScalarResultFrames* PCRITFrames = m_resultCollection->createScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, resVarAddr.fieldName, "PCRIT" ) ); frameCountProgress.incrementProgress(); const RigFemPart* femPart = m_resultCollection->parts()->part( partIndex ); const std::vector& nodeCoordinates = femPart->nodes().coordinates; float tanFricAng = tan( m_resultCollection->parameterFrictionAngleRad() ); float cohPrTanFricAngle = (float)( m_resultCollection->parameterCohesion() / tanFricAng ); int frameCount = s11Frames->frameCount(); for ( int fIdx = 0; fIdx < frameCount; ++fIdx ) { const std::vector& s11 = s11Frames->frameData( fIdx ); const std::vector& s22 = s22Frames->frameData( fIdx ); const std::vector& s33 = s33Frames->frameData( fIdx ); const std::vector& s12 = s12Frames->frameData( fIdx ); const std::vector& s23 = s23Frames->frameData( fIdx ); const std::vector& s13 = s13Frames->frameData( fIdx ); std::vector& SNDat = SNFrames->frameData( fIdx ); std::vector& STHDat = STHFrames->frameData( fIdx ); std::vector& STQVDat = STQVFrames->frameData( fIdx ); std::vector& TNHDat = TNHFrames->frameData( fIdx ); std::vector& TNQVDat = TNQVFrames->frameData( fIdx ); std::vector& THQVDat = THQVFrames->frameData( fIdx ); std::vector& TPDat = TPFrames->frameData( fIdx ); std::vector& TincDat = TPincFrames->frameData( fIdx ); std::vector& FAULTMOBDat = FAULTMOBFrames->frameData( fIdx ); std::vector& PCRITDat = PCRITFrames->frameData( fIdx ); // HACK ! Todo : make it robust against other elements than Hex8 size_t valCount = s11.size() * 3; // Number of Elm Node Face results 24 = 4 * num faces = 3* numElmNodes SNDat.resize( valCount ); STHDat.resize( valCount ); STQVDat.resize( valCount ); TNHDat.resize( valCount ); TNQVDat.resize( valCount ); THQVDat.resize( valCount ); TPDat.resize( valCount ); TincDat.resize( valCount ); FAULTMOBDat.resize( valCount ); PCRITDat.resize( valCount ); int elementCount = femPart->elementCount(); #pragma omp parallel for for ( int elmIdx = 0; elmIdx < elementCount; ++elmIdx ) { RigElementType elmType = femPart->elementType( elmIdx ); int faceCount = RigFemTypes::elmentFaceCount( elmType ); const int* elmNodeIndices = femPart->connectivities( elmIdx ); int elmNodFaceResIdxElmStart = elmIdx * 24; // HACK should get from part for ( int lfIdx = 0; lfIdx < faceCount; ++lfIdx ) { int faceNodeCount = 0; const int* localElmNodeIndicesForFace = RigFemTypes::localElmNodeIndicesForFace( elmType, lfIdx, &faceNodeCount ); if ( faceNodeCount == 4 ) { int elmNodFaceResIdxFaceStart = elmNodFaceResIdxElmStart + lfIdx * 4; // HACK cvf::Vec3f quadVxs[4]; quadVxs[0] = ( nodeCoordinates[elmNodeIndices[localElmNodeIndicesForFace[0]]] ); quadVxs[1] = ( nodeCoordinates[elmNodeIndices[localElmNodeIndicesForFace[1]]] ); quadVxs[2] = ( nodeCoordinates[elmNodeIndices[localElmNodeIndicesForFace[2]]] ); quadVxs[3] = ( nodeCoordinates[elmNodeIndices[localElmNodeIndicesForFace[3]]] ); cvf::Mat3f rotMx = cvf::GeometryTools::computePlaneHorizontalRotationMx( quadVxs[2] - quadVxs[0], quadVxs[3] - quadVxs[1] ); size_t qElmNodeResIdx[4]; qElmNodeResIdx[0] = femPart->elementNodeResultIdx( elmIdx, localElmNodeIndicesForFace[0] ); qElmNodeResIdx[1] = femPart->elementNodeResultIdx( elmIdx, localElmNodeIndicesForFace[1] ); qElmNodeResIdx[2] = femPart->elementNodeResultIdx( elmIdx, localElmNodeIndicesForFace[2] ); qElmNodeResIdx[3] = femPart->elementNodeResultIdx( elmIdx, localElmNodeIndicesForFace[3] ); for ( int qIdx = 0; qIdx < 4; ++qIdx ) { size_t elmNodResIdx = qElmNodeResIdx[qIdx]; float t11 = s11[elmNodResIdx]; float t22 = s22[elmNodResIdx]; float t33 = s33[elmNodResIdx]; float t12 = s12[elmNodResIdx]; float t23 = s23[elmNodResIdx]; float t13 = s13[elmNodResIdx]; caf::Ten3f tensor( t11, t22, t33, t12, t23, t13 ); caf::Ten3f xfTen = tensor.rotated( rotMx ); int elmNodFaceResIdx = elmNodFaceResIdxFaceStart + qIdx; float szx = xfTen[caf::Ten3f::SZX]; float syz = xfTen[caf::Ten3f::SYZ]; float szz = xfTen[caf::Ten3f::SZZ]; STHDat[elmNodFaceResIdx] = xfTen[caf::Ten3f::SXX]; STQVDat[elmNodFaceResIdx] = xfTen[caf::Ten3f::SYY]; SNDat[elmNodFaceResIdx] = xfTen[caf::Ten3f::SZZ]; TNHDat[elmNodFaceResIdx] = xfTen[caf::Ten3f::SZX]; TNQVDat[elmNodFaceResIdx] = xfTen[caf::Ten3f::SYZ]; THQVDat[elmNodFaceResIdx] = xfTen[caf::Ten3f::SXY]; float TP = sqrt( szx * szx + syz * syz ); TPDat[elmNodFaceResIdx] = TP; if ( TP > 1e-5 ) { TincDat[elmNodFaceResIdx] = cvf::Math::toDegrees( acos( syz / TP ) ); } else { TincDat[elmNodFaceResIdx] = std::numeric_limits::infinity(); } FAULTMOBDat[elmNodFaceResIdx] = TP / ( tanFricAng * ( szz + cohPrTanFricAngle ) ); PCRITDat[elmNodFaceResIdx] = szz - TP / tanFricAng; } } } } frameCountProgress.incrementProgress(); } RigFemScalarResultFrames* requestedSurfStress = m_resultCollection->findOrLoadScalarResult( partIndex, resVarAddr ); return requestedSurfStress; }