///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2020- Equinor ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigFemPartResultCalculatorNormalST.h" #include "RigFemPart.h" #include "RigFemPartCollection.h" #include "RigFemPartResultsCollection.h" #include "RigFemResultAddress.h" #include "RigFemScalarResultFrames.h" #include "cafProgressInfo.h" #include //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigFemPartResultCalculatorNormalST::RigFemPartResultCalculatorNormalST( RigFemPartResultsCollection& collection ) : RigFemPartResultCalculator( collection ) { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigFemPartResultCalculatorNormalST::~RigFemPartResultCalculatorNormalST() { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RigFemPartResultCalculatorNormalST::isMatching( const RigFemResultAddress& resVarAddr ) const { return ( ( resVarAddr.fieldName == "ST" ) && ( resVarAddr.componentName == "S11" || resVarAddr.componentName == "S22" || resVarAddr.componentName == "S33" ) ); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigFemScalarResultFrames* RigFemPartResultCalculatorNormalST::calculate( int partIndex, const RigFemResultAddress& resVarAddr ) { caf::ProgressInfo stepCountProgress( m_resultCollection->timeStepCount() * 3, "" ); stepCountProgress.setProgressDescription( "Calculating " + QString::fromStdString( resVarAddr.fieldName + ": " + resVarAddr.componentName ) ); stepCountProgress.setNextProgressIncrement( m_resultCollection->timeStepCount() ); RigFemScalarResultFrames* srcSDataFrames = m_resultCollection->findOrLoadScalarResult( partIndex, RigFemResultAddress( resVarAddr.resultPosType, "S-Bar", resVarAddr.componentName ) ); stepCountProgress.incrementProgress(); stepCountProgress.setNextProgressIncrement( m_resultCollection->timeStepCount() ); RigFemScalarResultFrames* srcPORDataFrames = m_resultCollection->findOrLoadScalarResult( partIndex, RigFemResultAddress( RIG_NODAL, "POR-Bar", "" ) ); RigFemScalarResultFrames* dstDataFrames = m_resultCollection->createScalarResult( partIndex, resVarAddr ); const RigFemPart* femPart = m_resultCollection->parts()->part( partIndex ); stepCountProgress.incrementProgress(); constexpr float inf = std::numeric_limits::infinity(); const int timeSteps = srcSDataFrames->timeStepCount(); for ( int stepIdx = 0; stepIdx < timeSteps; stepIdx++ ) { const int frameCount = srcSDataFrames->frameCount( stepIdx ); for ( int fIdx = 0; fIdx < frameCount; fIdx++ ) { const std::vector& srcSFrameData = srcSDataFrames->frameData( stepIdx, fIdx ); const std::vector& srcPORFrameData = srcPORDataFrames->frameData( stepIdx, fIdx ); int elementCount = femPart->elementCount(); std::vector& dstFrameData = dstDataFrames->frameData( stepIdx, fIdx ); size_t valCount = srcSFrameData.size(); dstFrameData.resize( valCount ); #pragma omp parallel for for ( int elmIdx = 0; elmIdx < elementCount; ++elmIdx ) { RigElementType elmType = femPart->elementType( elmIdx ); int elmNodeCount = RigFemTypes::elementNodeCount( femPart->elementType( elmIdx ) ); if ( elmType == HEX8P ) { for ( int elmNodIdx = 0; elmNodIdx < elmNodeCount; ++elmNodIdx ) { const size_t elmNodResIdx = femPart->elementNodeResultIdx( elmIdx, elmNodIdx ); const int nodeIdx = femPart->nodeIdxFromElementNodeResultIdx( elmNodResIdx ); float por = 0.0f; if ( nodeIdx < static_cast( srcPORFrameData.size() ) ) { por = srcPORFrameData[nodeIdx]; if ( por == inf ) por = 0.0f; } if ( elmNodResIdx < srcSFrameData.size() ) { // ST = SE_abacus + porePressure // porePressure is POR-Bar. double SE_abacus = -srcSFrameData[elmNodResIdx]; dstFrameData[elmNodResIdx] = SE_abacus + por; } } } else { for ( int elmNodIdx = 0; elmNodIdx < elmNodeCount; ++elmNodIdx ) { size_t elmNodResIdx = femPart->elementNodeResultIdx( elmIdx, elmNodIdx ); if ( elmNodResIdx < srcSFrameData.size() ) { dstFrameData[elmNodResIdx] = -srcSFrameData[elmNodResIdx]; } } } } } stepCountProgress.incrementProgress(); } return dstDataFrames; }