///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2018 Equinor ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RicMswValveAccumulators.h" #include "RiaStatisticsTools.h" #include "RicMswCompletions.h" #include "RimPerforationInterval.h" #include "RimWellPathValve.h" //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RicMswICDAccumulator::RicMswICDAccumulator( RicMswValve* valve, RiaDefines::EclipseUnitSystem unitSystem ) : RicMswValveAccumulator( valve, unitSystem ) , m_areaSum( 0.0 ) { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RicMswICDAccumulator::accumulateValveParameters( const RimWellPathValve* wellPathValve, double overlapLength, double perforationCompsegsLength ) { const double eps = 1.0e-8; CVF_ASSERT( wellPathValve ); if ( wellPathValve->componentType() == RiaDefines::WellPathComponentType::ICV || wellPathValve->componentType() == RiaDefines::WellPathComponentType::ICD ) { size_t nICDs = wellPathValve->valveLocations().size(); double icdOrificeRadius = wellPathValve->orificeDiameter( m_unitSystem ) / 2; double icdArea = icdOrificeRadius * icdOrificeRadius * cvf::PI_D; double totalIcdArea = static_cast( nICDs ) * icdArea; double icdAreaFactor = totalIcdArea * overlapLength / perforationCompsegsLength; if ( icdAreaFactor > eps ) { m_valid = true; m_areaSum += icdAreaFactor; m_coefficientCalculator.addValueAndWeight( wellPathValve->flowCoefficient(), icdAreaFactor ); return true; } } return false; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RicMswICDAccumulator::applyToSuperValve() { auto icd = dynamic_cast( m_valve ); CVF_ASSERT( icd ); if ( m_coefficientCalculator.validAggregatedWeight() && m_valid ) { icd->setIsValid( m_valid ); icd->setArea( m_areaSum ); icd->setFlowCoefficient( m_coefficientCalculator.weightedMean() ); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RicMswAICDAccumulator::RicMswAICDAccumulator( RicMswValve* valve, RiaDefines::EclipseUnitSystem unitSystem ) : RicMswValveAccumulator( valve, unitSystem ) , m_deviceOpen( false ) , m_accumulatedLength( 0.0 ) , m_accumulatedFlowScalingFactorDivisor( 0.0 ) { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RicMswAICDAccumulator::accumulateValveParameters( const RimWellPathValve* wellPathValve, double overlapLength, double perforationCompsegsLength ) { const double eps = 1.0e-8; CVF_ASSERT( wellPathValve ); if ( wellPathValve->componentType() == RiaDefines::WellPathComponentType::AICD && overlapLength > eps ) { const RimWellPathAicdParameters* params = wellPathValve->aicdParameters(); if ( params->isValid() ) { m_valid = true; m_deviceOpen = m_deviceOpen || params->isOpen(); if ( params->isOpen() ) { std::array values = params->doubleValues(); for ( size_t i = 0; i < (size_t)AICD_NUM_PARAMS; ++i ) { if ( RiaStatisticsTools::isValidNumber( values[i] ) ) { m_meanCalculators[i].addValueAndWeight( values[i], overlapLength ); } } m_accumulatedLength += overlapLength / perforationCompsegsLength; // https://github.com/OPM/ResInsight/issues/6126 // // flowScalingFactor = 1 / (lengthFraction * aicdCount) // where: // lengthFraction = length_COMPSEGS / Sum_length_COMPSEGS_for_valve // N_AICDs = number of AICDs in perforation interval size_t aicdCount = wellPathValve->valveLocations().size(); double lengthFraction = overlapLength / perforationCompsegsLength; double divisor = lengthFraction * aicdCount; m_accumulatedFlowScalingFactorDivisor += divisor; return true; } } } return false; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RicMswAICDAccumulator::applyToSuperValve() { const double eps = 1.0e-8; auto aicd = dynamic_cast( m_valve ); if ( aicd && m_valid && m_accumulatedLength > eps ) { std::array values; for ( size_t i = 0; i < (size_t)AICD_NUM_PARAMS; ++i ) { if ( m_meanCalculators[i].validAggregatedWeight() ) { values[i] = m_meanCalculators[i].weightedMean(); } else { values[i] = std::numeric_limits::infinity(); } } aicd->setIsValid( m_valid ); aicd->setIsOpen( m_deviceOpen ); aicd->setLength( m_accumulatedLength ); // See https://github.com/OPM/ResInsight/issues/6126 double flowScalingFactor = 0.0; if ( m_accumulatedFlowScalingFactorDivisor > eps ) { flowScalingFactor = 1.0 / m_accumulatedFlowScalingFactorDivisor; } aicd->setflowScalingFactor( flowScalingFactor ); aicd->values() = values; } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RicMswAICDAccumulator::accumulatedLength() const { return m_accumulatedLength; }