#include "RimContourMapProjection.h" #include "RiaWeightedGeometricMeanCalculator.h" #include "RiaWeightedHarmonicMeanCalculator.h" #include "RiaWeightedMeanCalculator.h" #include "RigActiveCellInfo.h" #include "RigCaseCellResultsData.h" #include "RigCell.h" #include "RigCellGeometryTools.h" #include "RigEclipseCaseData.h" #include "RigHexIntersectionTools.h" #include "RigMainGrid.h" #include "RigResultAccessor.h" #include "RigResultAccessorFactory.h" #include "RivReservoirViewPartMgr.h" #include "RimCellRangeFilterCollection.h" #include "RimContourMapView.h" #include "RimEclipseCellColors.h" #include "RimEclipseView.h" #include "RimEclipseResultCase.h" #include "RimEclipseResultDefinition.h" #include "RimProject.h" #include "RimRegularLegendConfig.h" #include "cafContourLines.h" #include "cafPdmUiDoubleSliderEditor.h" #include "cafPdmUiTreeOrdering.h" #include "cvfArray.h" #include "cvfCellRange.h" #include "cvfScalarMapper.h" #include "cvfStructGridGeometryGenerator.h" #include #include namespace caf { template<> void RimContourMapProjection::ResultAggregation::setUp() { addItem(RimContourMapProjection::RESULTS_TOP_VALUE, "TOP_VALUE", "Top Value"); addItem(RimContourMapProjection::RESULTS_MEAN_VALUE, "MEAN_VALUE", "Arithmetic Mean"); addItem(RimContourMapProjection::RESULTS_HARM_VALUE, "HARM_VALUE", "Harmonic Mean"); addItem(RimContourMapProjection::RESULTS_GEOM_VALUE, "GEOM_VALUE", "Geometric Mean"); addItem(RimContourMapProjection::RESULTS_MIN_VALUE, "MIN_VALUE", "Min Value"); addItem(RimContourMapProjection::RESULTS_MAX_VALUE, "MAX_VALUE", "Max Value"); addItem(RimContourMapProjection::RESULTS_VOLUME_SUM, "VOLUME_SUM", "Volume Weighted Sum"); addItem(RimContourMapProjection::RESULTS_SUM, "SUM", "Sum"); addItem(RimContourMapProjection::RESULTS_OIL_COLUMN, "OIL_COLUMN", "Oil Column"); addItem(RimContourMapProjection::RESULTS_GAS_COLUMN, "GAS_COLUMN", "Gas Column"); addItem(RimContourMapProjection::RESULTS_HC_COLUMN, "HC_COLUMN", "Hydrocarbon Column"); setDefault(RimContourMapProjection::RESULTS_MEAN_VALUE); } } CAF_PDM_SOURCE_INIT(RimContourMapProjection, "RimContourMapProjection"); //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimContourMapProjection::RimContourMapProjection() { CAF_PDM_InitObject("RimContourMapProjection", ":/draw_style_meshlines_24x24.png", "", ""); CAF_PDM_InitField(&m_relativeSampleSpacing, "SampleSpacing", 0.75, "Sample Spacing Factor", "", "", ""); m_relativeSampleSpacing.uiCapability()->setUiEditorTypeName(caf::PdmUiDoubleSliderEditor::uiEditorTypeName()); CAF_PDM_InitFieldNoDefault(&m_resultAggregation, "ResultAggregation", "Result Aggregation", "", "", ""); CAF_PDM_InitField(&m_showContourLines, "ContourLines", true, "Show Contour Lines", "", "", ""); CAF_PDM_InitField(&m_weightByParameter, "WeightByParameter", false, "Weight by Result Parameter", "", "", ""); CAF_PDM_InitFieldNoDefault(&m_weightingResult, "WeightingResult", "", "", "", ""); m_weightingResult.uiCapability()->setUiHidden(true); m_weightingResult.uiCapability()->setUiTreeChildrenHidden(true); m_weightingResult = new RimEclipseResultDefinition; m_weightingResult->findField("MResultType")->uiCapability()->setUiName("Result Type"); setName("Map Projection"); nameField()->uiCapability()->setUiReadOnly(true); m_resultAccessor = new RigHugeValResultAccessor; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimContourMapProjection::~RimContourMapProjection() { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::BoundingBox RimContourMapProjection::expandedBoundingBox() const { cvf::BoundingBox boundingBox = eclipseCase()->activeCellsBoundingBox(); boundingBox.expand(sampleSpacing() * 0.5); return boundingBox; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimContourMapProjection::generateGridMapping() { calculateTotalCellVisibility(); cvf::Vec3d gridExtent = expandedBoundingBox().extent(); cvf::Vec2ui gridSize2d = surfaceGridSize(); RimEclipseResultCase* eclipseCase = nullptr; firstAncestorOrThisOfTypeAsserted(eclipseCase); m_projected3dGridIndices.resize(vertexCount()); int nVertices = vertexCount(); const std::vector* weightingResultValues = nullptr; if (m_weightByParameter()) { size_t gridScalarResultIdx = m_weightingResult->scalarResultIndex(); if (gridScalarResultIdx != cvf::UNDEFINED_SIZE_T) { m_weightingResult->loadResult(); int timeStep = 0; if (m_weightingResult->hasDynamicResult()) { timeStep = view()->currentTimeStep(); } weightingResultValues = &(m_weightingResult->currentGridCellResults()->cellScalarResults(gridScalarResultIdx)[timeStep]); } } if (isStraightSummationResult()) { for (int index = 0; index < nVertices; ++index) { cvf::Vec2ui ij = ijFromGridIndex(index); cvf::Vec2d globalPos = globalPos2d(ij.x(), ij.y()); m_projected3dGridIndices[index] = visibleCellsAndLengthInCellFrom2dPoint(globalPos, weightingResultValues); } } else { #pragma omp parallel for for (int index = 0; index < nVertices; ++index) { cvf::Vec2ui ij = ijFromGridIndex(index); cvf::Vec2d globalPos = globalPos2d(ij.x(), ij.y()); m_projected3dGridIndices[index] = visibleCellsAndOverlapVolumeFrom2dPoint(globalPos, weightingResultValues); } } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimContourMapProjection::generateVertices(cvf::Vec3fArray* vertices, const caf::DisplayCoordTransform* displayCoordTransform) { CVF_ASSERT(vertices); vertices->resize(vertexCount()); cvf::Vec2ui gridSize2d = surfaceGridSize(); cvf::BoundingBox boundingBox = expandedBoundingBox(); int nVertices = vertexCount(); #pragma omp parallel for for (int index = 0; index < nVertices; ++index) { cvf::Vec2ui ij = ijFromGridIndex(index); cvf::Vec2d globalPos = globalPos2d(ij.x(), ij.y()); cvf::Vec3d globalVertexPos(globalPos, boundingBox.min().z() - 1.0); cvf::Vec3f displayVertexPos(displayCoordTransform->transformToDisplayCoord(globalVertexPos)); (*vertices)[index] = displayVertexPos; } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimContourMapProjection::ContourPolygons RimContourMapProjection::generateContourPolygons(const caf::DisplayCoordTransform* displayCoordTransform) { std::vector> contourPolygons; if (minValue() != std::numeric_limits::infinity() && maxValue() != -std::numeric_limits::infinity() && std::fabs(maxValue() - minValue()) > 1.0e-8) { cvf::BoundingBox boundingBox = expandedBoundingBox(); std::vector contourLevels; legendConfig()->scalarMapper()->majorTickValues(&contourLevels); int nContourLevels = static_cast(contourLevels.size()); if (nContourLevels > 2) { contourLevels[0] += (contourLevels[1] - contourLevels[0]) * 0.01; contourLevels[nContourLevels - 1] -= (contourLevels[nContourLevels - 1] - contourLevels[nContourLevels - 2]) * 0.01; std::vector> contourLines; caf::ContourLines::create(m_aggregatedResults, xPositions(), yPositions(), contourLevels, &contourLines); contourPolygons.reserve(contourLines.size()); for (size_t i = 0; i < contourLines.size(); ++i) { if (!contourLines[i].empty()) { cvf::ref contourPolygon = new cvf::Vec3fArray(contourLines[i].size()); for (size_t j = 0; j < contourLines[i].size(); ++j) { cvf::Vec3d contourPoint3d = cvf::Vec3d(contourLines[i][j], boundingBox.min().z()); cvf::Vec3d displayPoint3d = displayCoordTransform->transformToDisplayCoord(contourPoint3d); (*contourPolygon)[j] = cvf::Vec3f(displayPoint3d); } contourPolygons.push_back(contourPolygon); } } } } return contourPolygons; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimContourMapProjection::generateResults() { generateGridMapping(); int nVertices = vertexCount(); m_aggregatedResults = std::vector(nVertices, std::numeric_limits::infinity()); int timeStep = view()->currentTimeStep(); RimEclipseCellColors* cellColors = view()->cellResult(); RimEclipseResultCase* eclipseCase = nullptr; firstAncestorOrThisOfTypeAsserted(eclipseCase); { if (!cellColors->isTernarySaturationSelected()) { RigCaseCellResultsData* resultData = eclipseCase->results(RiaDefines::MATRIX_MODEL); if (isColumnResult()) { resultData->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "PORO"); resultData->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "NTG"); resultData->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "DZ"); if (m_resultAggregation == RESULTS_OIL_COLUMN || m_resultAggregation == RESULTS_HC_COLUMN) { resultData->findOrLoadScalarResultForTimeStep(RiaDefines::DYNAMIC_NATIVE, "SOIL", timeStep); } if (m_resultAggregation == RESULTS_GAS_COLUMN || m_resultAggregation == RESULTS_HC_COLUMN) { resultData->findOrLoadScalarResultForTimeStep(RiaDefines::DYNAMIC_NATIVE, "SGAS", timeStep); } } else { m_resultAccessor = RigResultAccessorFactory::createFromResultDefinition(eclipseCase->eclipseCaseData(), 0, timeStep, cellColors); if (m_resultAccessor.isNull()) { m_resultAccessor = new RigHugeValResultAccessor; } } #pragma omp parallel for for (int index = 0; index < nVertices; ++index) { cvf::Vec2ui ij = ijFromGridIndex(index); m_aggregatedResults[index] = calculateValue(ij.x(), ij.y()); } } } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimContourMapProjection::maxValue() const { double maxV = -std::numeric_limits::infinity(); int nVertices = vertexCount(); for (int index = 0; index < nVertices; ++index) { if (m_aggregatedResults[index] != std::numeric_limits::infinity()) { maxV = std::max(maxV, m_aggregatedResults[index]); } } return maxV; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimContourMapProjection::minValue() const { double minV = std::numeric_limits::infinity(); int nVertices = vertexCount(); for (int index = 0; index < nVertices; ++index) { if (m_aggregatedResults[index] != std::numeric_limits::infinity()) { minV = std::min(minV, m_aggregatedResults[index]); } } return minV; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimContourMapProjection::meanValue() const { return sumAllValues() / validVertexCount(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimContourMapProjection::sumAllValues() const { double sum = 0.0; int nVertices = vertexCount(); for (int index = 0; index < nVertices; ++index) { if (m_aggregatedResults[index] != std::numeric_limits::infinity()) { sum += m_aggregatedResults[index]; } } return sum; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimContourMapProjection::sampleSpacing() const { return m_relativeSampleSpacing * mainGrid()->characteristicIJCellSize(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimContourMapProjection::sampleSpacingFactor() const { return m_relativeSampleSpacing(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimContourMapProjection::showContourLines() const { return m_showContourLines(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::vector& RimContourMapProjection::aggregatedResults() const { return m_aggregatedResults; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- QString RimContourMapProjection::weightingParameter() const { QString parameter = "None"; if (m_weightByParameter() && !m_weightingResult->isTernarySaturationSelected()) { parameter = m_weightingResult->resultVariableUiShortName(); } return parameter; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimContourMapProjection::isMeanResult() const { return m_resultAggregation() == RESULTS_MEAN_VALUE || m_resultAggregation() == RESULTS_HARM_VALUE || m_resultAggregation() == RESULTS_GEOM_VALUE; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimContourMapProjection::isSummationResult() const { return isStraightSummationResult() || m_resultAggregation() == RESULTS_VOLUME_SUM; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimContourMapProjection::isStraightSummationResult() const { return isColumnResult() || m_resultAggregation() == RESULTS_SUM; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimContourMapProjection::isColumnResult() const { return m_resultAggregation() == RESULTS_OIL_COLUMN || m_resultAggregation() == RESULTS_GAS_COLUMN || m_resultAggregation() == RESULTS_HC_COLUMN; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimContourMapProjection::value(uint i, uint j) const { size_t index = gridIndex(i, j); if (index < vertexCount()) { return m_aggregatedResults.at(gridIndex(i, j)); } return std::numeric_limits::infinity(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimContourMapProjection::calculateValue(uint i, uint j) const { if (!isColumnResult() && view()->cellResult()->scalarResultIndex() == cvf::UNDEFINED_SIZE_T) { return 0.0; // Special case of NONE-result. Show 0 all over to ensure we see something. } const std::vector>& matchingCells = cellsAtPos2d(i, j); if (!matchingCells.empty()) { switch (m_resultAggregation()) { case RESULTS_TOP_VALUE: { size_t cellIdx = matchingCells.front().first; double cellValue = m_resultAccessor->cellScalarGlobIdx(cellIdx); return cellValue; } case RESULTS_MEAN_VALUE: { RiaWeightedMeanCalculator calculator; for (auto cellIdxAndWeight : matchingCells) { size_t cellIdx = cellIdxAndWeight.first; double cellValue = m_resultAccessor->cellScalarGlobIdx(cellIdx); calculator.addValueAndWeight(cellValue, cellIdxAndWeight.second); } if (calculator.validAggregatedWeight()) { return calculator.weightedMean(); } return std::numeric_limits::infinity(); } case RESULTS_GEOM_VALUE: { RiaWeightedGeometricMeanCalculator calculator; for (auto cellIdxAndWeight : matchingCells) { size_t cellIdx = cellIdxAndWeight.first; double cellValue = m_resultAccessor->cellScalarGlobIdx(cellIdx); if (cellValue < 1.0e-8) { return 0.0; } calculator.addValueAndWeight(cellValue, cellIdxAndWeight.second); } if (calculator.validAggregatedWeight()) { qDebug() << calculator.weightedMean(); return calculator.weightedMean(); } return std::numeric_limits::infinity(); } case RESULTS_HARM_VALUE: { RiaWeightedHarmonicMeanCalculator calculator; for (auto cellIdxAndWeight : matchingCells) { size_t cellIdx = cellIdxAndWeight.first; double cellValue = m_resultAccessor->cellScalarGlobIdx(cellIdx); if (std::fabs(cellValue) < 1.0e-8) { return 0.0; } calculator.addValueAndWeight(cellValue, cellIdxAndWeight.second); } if (calculator.validAggregatedWeight()) { return calculator.weightedMean(); } return std::numeric_limits::infinity(); } case RESULTS_MAX_VALUE: { double maxValue = -std::numeric_limits::infinity(); for (auto cellIdxAndWeight : matchingCells) { size_t cellIdx = cellIdxAndWeight.first; double cellValue = m_resultAccessor->cellScalarGlobIdx(cellIdx); maxValue = std::max(maxValue, cellValue); } return maxValue; } case RESULTS_MIN_VALUE: { double minValue = std::numeric_limits::infinity(); for (auto cellIdxAndWeight : matchingCells) { size_t cellIdx = cellIdxAndWeight.first; double cellValue = m_resultAccessor->cellScalarGlobIdx(cellIdx); minValue = std::min(minValue, cellValue); } return minValue; } case RESULTS_VOLUME_SUM: case RESULTS_SUM: { double sum = 0.0; for (auto cellIdxAndWeight : matchingCells) { size_t cellIdx = cellIdxAndWeight.first; double cellValue = m_resultAccessor->cellScalarGlobIdx(cellIdx); sum += cellValue * cellIdxAndWeight.second; } return sum; } case RESULTS_OIL_COLUMN: case RESULTS_GAS_COLUMN: case RESULTS_HC_COLUMN: { double sum = 0.0; for (auto cellIdxAndWeight : matchingCells) { size_t cellIdx = cellIdxAndWeight.first; double cellValue = findColumnResult(m_resultAggregation(), cellIdx); sum += cellValue * cellIdxAndWeight.second; } return sum; } default: CVF_TIGHT_ASSERT(false); } } return std::numeric_limits::infinity(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimContourMapProjection::hasResultAt(uint i, uint j) const { RimEclipseCellColors* cellColors = view()->cellResult(); if (cellColors->isTernarySaturationSelected()) { return false; } return !cellsAtPos2d(i, j).empty(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::Vec2ui RimContourMapProjection::surfaceGridSize() const { cvf::BoundingBox boundingBox = expandedBoundingBox(); cvf::Vec3d gridExtent = boundingBox.extent(); uint projectionSizeX = static_cast(std::ceil(gridExtent.x() / sampleSpacing())) + 1u; uint projectionSizeY = static_cast(std::ceil(gridExtent.y() / sampleSpacing())) + 1u; return cvf::Vec2ui(projectionSizeX, projectionSizeY); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- uint RimContourMapProjection::vertexCount() const { cvf::Vec2ui gridSize2d = surfaceGridSize(); return gridSize2d.x() * gridSize2d.y(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- uint RimContourMapProjection::validVertexCount() const { uint validCount = 0u; for (uint i = 0; i < vertexCount(); ++i) { cvf::Vec2ui ij = ijFromGridIndex(i); if (hasResultAt(ij.x(), ij.y())) { validCount++; } } return validCount; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimRegularLegendConfig* RimContourMapProjection::legendConfig() const { return view()->cellResult()->legendConfig(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimContourMapProjection::calculateTotalCellVisibility() { m_cellGridIdxVisibility = view()->currentTotalCellVisibility(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::Vec2d RimContourMapProjection::globalPos2d(uint i, uint j) const { cvf::BoundingBox boundingBox = expandedBoundingBox(); cvf::Vec3d gridExtent = boundingBox.extent(); cvf::Vec2d origin(boundingBox.min().x(), boundingBox.min().y()); cvf::Vec2ui gridSize2d = surfaceGridSize(); return origin + cvf::Vec2d((i * gridExtent.x()) / (gridSize2d.x() - 1), (j * gridExtent.y()) / (gridSize2d.y() - 1)); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::Vec2ui RimContourMapProjection::ijFromLocalPos(const cvf::Vec2d& localPos2d) const { cvf::Vec2ui ijCoords(localPos2d.x() / sampleSpacing(), localPos2d.y() / sampleSpacing()); return ijCoords; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::vector>& RimContourMapProjection::cellsAtPos2d(uint i, uint j) const { return m_projected3dGridIndices[gridIndex(i, j)]; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector> RimContourMapProjection::visibleCellsAndOverlapVolumeFrom2dPoint(const cvf::Vec2d& globalPos2d, const std::vector* weightingResultValues) const { cvf::BoundingBox gridBoundingBox = expandedBoundingBox(); cvf::Vec3d top2dElementCentroid(globalPos2d, gridBoundingBox.max().z()); cvf::Vec3d bottom2dElementCentroid(globalPos2d, gridBoundingBox.min().z()); cvf::Vec3d planarDiagonalVector(0.5 * sampleSpacing(), 0.5 * sampleSpacing(), 0.0); cvf::Vec3d topNECorner = top2dElementCentroid + planarDiagonalVector; cvf::Vec3d bottomSWCorner = bottom2dElementCentroid - planarDiagonalVector; cvf::BoundingBox bbox2dElement(bottomSWCorner, topNECorner); std::vector allCellIndices; mainGrid()->findIntersectingCells(bbox2dElement, &allCellIndices); typedef std::map>> KLayerCellWeightMap; KLayerCellWeightMap matchingVisibleCellsWeightPerKLayer; std::array hexCorners; for (size_t globalCellIdx : allCellIndices) { if ((*m_cellGridIdxVisibility)[globalCellIdx]) { RigCell cell = mainGrid()->globalCellArray()[globalCellIdx]; size_t mainGridCellIdx = cell.mainGridCellIndex(); size_t i, j, k; mainGrid()->ijkFromCellIndex(mainGridCellIdx, &i, &j, &k); size_t localCellIdx = cell.gridLocalCellIndex(); RigGridBase* localGrid = cell.hostGrid(); localGrid->cellCornerVertices(localCellIdx, hexCorners.data()); cvf::BoundingBox overlapBBox; std::array overlapCorners = RigCellGeometryTools::estimateHexOverlapWithBoundingBox(hexCorners, bbox2dElement, &overlapBBox); double overlapVolume = RigCellGeometryTools::calculateCellVolume(overlapCorners); if (overlapVolume > 0.0) { double weight = overlapVolume; if (weightingResultValues) { const RigActiveCellInfo* activeCellInfo = eclipseCase()->eclipseCaseData()->activeCellInfo(RiaDefines::MATRIX_MODEL); size_t cellResultIdx = activeCellInfo->cellResultIndex(globalCellIdx); double result = std::max((*weightingResultValues)[cellResultIdx], 0.0); if (result < 1.0e-6) { result = 0.0; } weight *= result; } if (weight > 0.0) { matchingVisibleCellsWeightPerKLayer[k].push_back(std::make_pair(globalCellIdx, weight)); } } } } std::vector> matchingVisibleCellsAndWeight; for (auto kLayerCellWeight : matchingVisibleCellsWeightPerKLayer) { for (auto cellWeight : kLayerCellWeight.second) { matchingVisibleCellsAndWeight.push_back(std::make_pair(cellWeight.first, cellWeight.second)); } } return matchingVisibleCellsAndWeight; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector> RimContourMapProjection::visibleCellsAndLengthInCellFrom2dPoint(const cvf::Vec2d& globalPos2d, const std::vector* weightingResultValues /*= nullptr*/) const { cvf::BoundingBox boundingBox = expandedBoundingBox(); cvf::Vec3d highestPoint(globalPos2d, boundingBox.max().z()); cvf::Vec3d lowestPoint(globalPos2d, boundingBox.min().z()); cvf::BoundingBox rayBBox; rayBBox.add(highestPoint); rayBBox.add(lowestPoint); std::vector allCellIndices; mainGrid()->findIntersectingCells(rayBBox, &allCellIndices); std::map>> matchingVisibleCellsAndWeightPerKLayer; cvf::Vec3d hexCorners[8]; for (size_t globalCellIdx : allCellIndices) { if ((*m_cellGridIdxVisibility)[globalCellIdx]) { RigCell cell = mainGrid()->globalCellArray()[globalCellIdx]; size_t mainGridCellIdx = cell.mainGridCellIndex(); size_t i, j, k; mainGrid()->ijkFromCellIndex(mainGridCellIdx, &i, &j, &k); size_t localCellIdx = cell.gridLocalCellIndex(); RigGridBase* localGrid = cell.hostGrid(); localGrid->cellCornerVertices(localCellIdx, hexCorners); std::vector intersections; if (RigHexIntersectionTools::lineHexCellIntersection(highestPoint, lowestPoint, hexCorners, 0, &intersections)) { double lengthInCell = (intersections.back().m_intersectionPoint - intersections.front().m_intersectionPoint).length(); matchingVisibleCellsAndWeightPerKLayer[k].push_back(std::make_pair(globalCellIdx, lengthInCell)); } } } std::vector> matchingVisibleCellsAndWeight; for (auto kLayerCellWeight : matchingVisibleCellsAndWeightPerKLayer) { // Make sure the sum of all weights in the same K-layer is 1. double weightSumThisKLayer = 0.0; for (auto cellWeight : kLayerCellWeight.second) { weightSumThisKLayer += cellWeight.second; } for (auto cellWeight : kLayerCellWeight.second) { matchingVisibleCellsAndWeight.push_back(std::make_pair(cellWeight.first, cellWeight.second / weightSumThisKLayer)); } } return matchingVisibleCellsAndWeight; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RimContourMapProjection::findColumnResult(ResultAggregation resultAggregation, size_t cellGlobalIdx) const { const RigCaseCellResultsData* resultData = eclipseCase()->results(RiaDefines::MATRIX_MODEL); size_t poroResultIndex = resultData->findScalarResultIndex(RiaDefines::STATIC_NATIVE, "PORO"); size_t ntgResultIndex = resultData->findScalarResultIndex(RiaDefines::STATIC_NATIVE, "NTG"); size_t dzResultIndex = resultData->findScalarResultIndex(RiaDefines::STATIC_NATIVE, "DZ"); if (poroResultIndex == cvf::UNDEFINED_SIZE_T || ntgResultIndex == cvf::UNDEFINED_SIZE_T) { return std::numeric_limits::infinity(); } const std::vector& poroResults = resultData->cellScalarResults(poroResultIndex)[0]; const std::vector& ntgResults = resultData->cellScalarResults(ntgResultIndex)[0]; const std::vector& dzResults = resultData->cellScalarResults(dzResultIndex)[0]; const RigActiveCellInfo* activeCellInfo = eclipseCase()->eclipseCaseData()->activeCellInfo(RiaDefines::MATRIX_MODEL); size_t cellResultIdx = activeCellInfo->cellResultIndex(cellGlobalIdx); if (cellResultIdx >= poroResults.size() || cellResultIdx >= ntgResults.size()) { return std::numeric_limits::infinity(); } double poro = poroResults.at(cellResultIdx); double ntg = ntgResults.at(cellResultIdx); double dz = dzResults.at(cellResultIdx); int timeStep = view()->currentTimeStep(); double resultValue = 0.0; if (resultAggregation == RESULTS_OIL_COLUMN || resultAggregation == RESULTS_HC_COLUMN) { size_t soilResultIndex = resultData->findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "SOIL"); const std::vector& soilResults = resultData->cellScalarResults(soilResultIndex)[timeStep]; if (cellResultIdx < soilResults.size()) { resultValue = soilResults.at(cellResultIdx); } } if (resultAggregation == RESULTS_GAS_COLUMN || resultAggregation == RESULTS_HC_COLUMN) { size_t sgasResultIndex = resultData->findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "SGAS"); const std::vector& sgasResults = resultData->cellScalarResults(sgasResultIndex)[timeStep]; if (cellResultIdx < sgasResults.size()) { resultValue += sgasResults.at(cellResultIdx); } } return resultValue * poro * ntg * dz; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const RimEclipseResultCase* RimContourMapProjection::eclipseCase() const { const RimEclipseResultCase* eclipseCase = nullptr; firstAncestorOrThisOfType(eclipseCase); return eclipseCase; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimEclipseResultCase* RimContourMapProjection::eclipseCase() { RimEclipseResultCase* eclipseCase = nullptr; firstAncestorOrThisOfType(eclipseCase); return eclipseCase; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimContourMapView* RimContourMapProjection::view() const { RimContourMapView* view = nullptr; firstAncestorOrThisOfTypeAsserted(view); return view; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- size_t RimContourMapProjection::gridIndex(uint i, uint j) const { cvf::Vec2ui gridSize2d = surfaceGridSize(); CVF_ASSERT(i < gridSize2d.x()); CVF_ASSERT(j < gridSize2d.y()); return i + j * gridSize2d.x(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::Vec2ui RimContourMapProjection::ijFromGridIndex(size_t index) const { CVF_TIGHT_ASSERT(index < vertexCount()); cvf::Vec2ui gridSize2d = surfaceGridSize(); uint quotientX = static_cast(index) / gridSize2d.x(); uint remainderX = static_cast(index) % gridSize2d.x(); return cvf::Vec2ui(remainderX, quotientX); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimContourMapProjection::updateLegend() { RimEclipseCellColors* cellColors = view()->cellResult(); if (getLegendRangeFrom3dGrid()) { cellColors->updateLegendData(view()->currentTimeStep(), legendConfig()); } else { double minVal = minValue(); double maxVal = maxValue(); legendConfig()->setAutomaticRanges(minVal, maxVal, minVal, maxVal); } if (m_resultAggregation() == RESULTS_OIL_COLUMN || m_resultAggregation() == RESULTS_GAS_COLUMN || m_resultAggregation() == RESULTS_HC_COLUMN) { legendConfig()->setTitle(QString("Map Projection\n%1").arg(m_resultAggregation().uiText())); } else { QString projectionLegendText = QString("Map Projection\n%1").arg(m_resultAggregation().uiText()); if (weightingParameter() != "None") { projectionLegendText += QString("(W: %1)").arg(weightingParameter()); } projectionLegendText += QString("\nResult: %1").arg(cellColors->resultVariableUiShortName()); legendConfig()->setTitle(projectionLegendText); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RimContourMapProjection::ResultAggregation RimContourMapProjection::resultAggregation() const { return m_resultAggregation(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- QString RimContourMapProjection::resultAggregationText() const { return m_resultAggregation().uiText(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- QString RimContourMapProjection::resultDescriptionText() const { QString resultText = resultAggregationText(); if (!isColumnResult()) { resultText += QString(", %1").arg(view()->cellResult()->resultVariable()); } return resultText; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimContourMapProjection::updatedWeightingResult() { this->updateConnectedEditors(); this->generateResults(); this->updateLegend(); RimProject* proj; this->firstAncestorOrThisOfTypeAsserted(proj); proj->scheduleCreateDisplayModelAndRedrawAllViews(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimContourMapProjection::checkForMapIntersection(const cvf::Vec3d& localPoint3d, cvf::Vec2ui* contourMapIJ, double* valueAtPoint) const { CVF_TIGHT_ASSERT(contourMapIJ); CVF_TIGHT_ASSERT(valueAtPoint); cvf::Vec2d localPos2d(localPoint3d.x(), localPoint3d.y()); *contourMapIJ = ijFromLocalPos(localPos2d); *valueAtPoint = value(contourMapIJ->x(), contourMapIJ->y()); return true; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RimContourMapProjection::xPositions() const { cvf::BoundingBox boundingBox = expandedBoundingBox(); cvf::Vec3d gridExtent = boundingBox.extent(); double origin = boundingBox.min().x(); cvf::Vec2ui gridSize2d = surfaceGridSize(); std::vector positions; positions.reserve(gridSize2d.x()); for (uint i = 0; i < gridSize2d.x(); ++i) { positions.push_back(origin + (i * gridExtent.x()) / (gridSize2d.x() - 1)); } return positions; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RimContourMapProjection::yPositions() const { cvf::BoundingBox boundingBox = expandedBoundingBox(); cvf::Vec3d gridExtent = boundingBox.extent(); double origin = boundingBox.min().y(); cvf::Vec2ui gridSize2d = surfaceGridSize(); std::vector positions; positions.reserve(gridSize2d.y()); for (uint j = 0; j < gridSize2d.y(); ++j) { positions.push_back(origin + (j * gridExtent.y()) / (gridSize2d.y() - 1)); } return positions; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigMainGrid* RimContourMapProjection::mainGrid() const { RimEclipseResultCase* eclipseCase = nullptr; firstAncestorOrThisOfTypeAsserted(eclipseCase); return eclipseCase->eclipseCaseData()->mainGrid(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimContourMapProjection::fieldChangedByUi(const caf::PdmFieldHandle* changedField, const QVariant& oldValue, const QVariant& newValue) { legendConfig()->disableAllTimeStepsRange(!getLegendRangeFrom3dGrid()); m_weightingResult->loadResult(); view()->updateConnectedEditors(); RimProject* proj; firstAncestorOrThisOfTypeAsserted(proj); proj->scheduleCreateDisplayModelAndRedrawAllViews(); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimContourMapProjection::defineEditorAttribute(const caf::PdmFieldHandle* field, QString uiConfigName, caf::PdmUiEditorAttribute* attribute) { if (&m_relativeSampleSpacing == field) { caf::PdmUiDoubleSliderEditorAttribute* myAttr = dynamic_cast(attribute); if (myAttr) { myAttr->m_minimum = 0.25; myAttr->m_maximum = 2.0; } } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimContourMapProjection::defineUiOrdering(QString uiConfigName, caf::PdmUiOrdering& uiOrdering) { caf::PdmUiGroup* mainGroup = uiOrdering.addNewGroup("Projection Settings"); mainGroup->add(&m_relativeSampleSpacing); mainGroup->add(&m_resultAggregation); mainGroup->add(&m_showContourLines); caf::PdmUiGroup* weightingGroup = uiOrdering.addNewGroup("Mean Weighting Options"); weightingGroup->add(&m_weightByParameter); weightingGroup->setCollapsedByDefault(true); m_weightByParameter.uiCapability()->setUiReadOnly(!isMeanResult()); if (!isMeanResult()) { m_weightByParameter = false; } if (m_weightByParameter()) { m_weightingResult->uiOrdering(uiConfigName, *weightingGroup); } uiOrdering.skipRemainingFields(true); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimContourMapProjection::defineUiTreeOrdering(caf::PdmUiTreeOrdering& uiTreeOrdering, QString uiConfigName /*= ""*/) { uiTreeOrdering.skipRemainingChildren(true); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RimContourMapProjection::initAfterRead() { legendConfig()->disableAllTimeStepsRange(!getLegendRangeFrom3dGrid()); if (eclipseCase()) { m_weightingResult->setEclipseCase(eclipseCase()); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RimContourMapProjection::getLegendRangeFrom3dGrid() const { if (isMeanResult()) { return true; } else if (m_resultAggregation == RESULTS_TOP_VALUE) { return true; } return false; }