///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2017- Statoil ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigWellPathStimplanIntersector.h" #include "RigCellGeometryTools.h" #include "RigFractureCell.h" #include "RigFractureGrid.h" #include "RigWellPath.h" #include "RimFracture.h" #include "RimFractureTemplate.h" #include "RimSimWellFracture.h" #include "RimStimPlanFractureTemplate.h" #include "cvfBase.h" #include "cvfMath.h" #include "cvfMatrix4.h" #include //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigWellPathStimplanIntersector::RigWellPathStimplanIntersector(const RigWellPath* wellPathGeom, const RimFracture* rimFracture) { std::vector wellPathPoints = wellPathGeom->wellPathPointsIncludingInterpolatedIntersectionPoint(rimFracture->fractureMD()); cvf::Mat4d fractureXf = rimFracture->transformMatrix(); double wellRadius = rimFracture->wellRadius(); std::vector> fractureGridCellPolygons; { RimFractureTemplate* fractureTemplate = rimFracture->fractureTemplate(); if (fractureTemplate && fractureTemplate->fractureGrid()) { const std::vector& stpCells = fractureTemplate->fractureGrid()->fractureCells(); for (const auto& stpCell : stpCells) { fractureGridCellPolygons.push_back(stpCell.getPolygon()); } } } double perforationLength = rimFracture->perforationLength(); calculate(fractureXf, wellPathPoints, wellRadius, perforationLength, fractureGridCellPolygons, m_stimPlanCellIdxToIntersectionInfoMap); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::map& RigWellPathStimplanIntersector::intersections() const { return m_stimPlanCellIdxToIntersectionInfoMap; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigWellPathStimplanIntersector::calculate(const cvf::Mat4d& fractureXf, const std::vector& wellPathPointsDomainCoords, double wellRadius, double perforationLength, const std::vector>& fractureGridCellPolygons, std::map& m_stimPlanCellIdxToIntersectionInfoMap) { cvf::Mat4d toFractureXf = fractureXf.getInverted(); std::vector perforationLengthBoundingBoxPolygon; { double cicleRadius = perforationLength / 2; int pointsInCirclePolygon = 20; for (int i = 0; i < pointsInCirclePolygon; i++) { double x = cicleRadius * cvf::Math::cos(i * (2 * cvf::PI_D / pointsInCirclePolygon)); double y = cicleRadius * cvf::Math::sin(i * (2 * cvf::PI_D / pointsInCirclePolygon)); perforationLengthBoundingBoxPolygon.push_back(cvf::Vec3d(x, y, 0)); } } // Convert well path to fracture template system std::vector fractureRelativeWellPathPoints; for (const auto& wellPPoint : wellPathPointsDomainCoords) { fractureRelativeWellPathPoints.push_back(wellPPoint.getTransformedPoint(toFractureXf)); } // Clip well path to fracture domain std::vector> wellPathPartsWithinFracture = RigCellGeometryTools::clipPolylineByPolygon( fractureRelativeWellPathPoints, perforationLengthBoundingBoxPolygon, RigCellGeometryTools::INTERPOLATE_LINE_Z); // Remove the part of the well path that is more than well radius away from the fracture plane std::vector> intersectingWellPathParts; for (const auto& part : wellPathPartsWithinFracture) { std::vector currentIntersectingWpPart; for (size_t vxIdx = 0; vxIdx < part.size() - 1; ++vxIdx) { double thisAbsZ = fabs(part[vxIdx].z()); double nextAbsZ = fabs(part[vxIdx + 1].z()); double thisZ = part[vxIdx].z(); double nextZ = part[vxIdx + 1].z(); if (thisAbsZ >= wellRadius && nextAbsZ >= wellRadius) { if ((thisZ >= 0 && nextZ >= 0) || (thisZ <= 0 && nextZ <= 0)) { continue; // Outside } else // In and out { { double wellRadiusDistFromPlane = thisZ > 0 ? wellRadius : -wellRadius; double fraction = (wellRadiusDistFromPlane - thisZ) / (nextZ - thisZ); cvf::Vec3d intersectPoint = part[vxIdx] + fraction * (part[vxIdx + 1] - part[vxIdx]); currentIntersectingWpPart.push_back(intersectPoint); } { double wellRadiusDistFromPlane = nextZ > 0 ? wellRadius : -wellRadius; double fraction = (wellRadiusDistFromPlane - thisZ) / (nextZ - thisZ); cvf::Vec3d intersectPoint = part[vxIdx] + fraction * (part[vxIdx + 1] - part[vxIdx]); currentIntersectingWpPart.push_back(intersectPoint); intersectingWellPathParts.push_back(currentIntersectingWpPart); currentIntersectingWpPart.clear(); } continue; } } if (thisAbsZ < wellRadius && nextAbsZ < wellRadius) // Inside { currentIntersectingWpPart.push_back(part[vxIdx]); continue; } if (thisAbsZ < wellRadius && nextAbsZ >= wellRadius) // Going out { currentIntersectingWpPart.push_back(part[vxIdx]); double wellRadiusDistFromPlane = nextZ > 0 ? wellRadius : -wellRadius; double fraction = (wellRadiusDistFromPlane - thisZ) / (nextZ - thisZ); cvf::Vec3d intersectPoint = part[vxIdx] + fraction * (part[vxIdx + 1] - part[vxIdx]); currentIntersectingWpPart.push_back(intersectPoint); intersectingWellPathParts.push_back(currentIntersectingWpPart); currentIntersectingWpPart.clear(); continue; } if (thisAbsZ >= wellRadius && nextAbsZ < wellRadius) // Going in { double wellRadiusDistFromPlane = thisZ > 0 ? wellRadius : -wellRadius; double fraction = (wellRadiusDistFromPlane - thisZ) / (nextZ - thisZ); cvf::Vec3d intersectPoint = part[vxIdx] + fraction * (part[vxIdx + 1] - part[vxIdx]); currentIntersectingWpPart.push_back(intersectPoint); continue; } } // Add last point if it is within the radius if (part.size() > 1 && fabs(part.back().z()) < wellRadius) { currentIntersectingWpPart.push_back(part.back()); } if (!currentIntersectingWpPart.empty()) { intersectingWellPathParts.push_back(currentIntersectingWpPart); } } // Find the StimPlan cells touched by the intersecting well path parts for (size_t cIdx = 0; cIdx < fractureGridCellPolygons.size(); ++cIdx) { const std::vector& cellPolygon = fractureGridCellPolygons[cIdx]; for (const auto& wellpathPart : intersectingWellPathParts) { std::vector> wellPathPartsInPolygon = RigCellGeometryTools::clipPolylineByPolygon(wellpathPart, cellPolygon, RigCellGeometryTools::USE_HUGEVAL); for (const auto& wellPathPartInCell : wellPathPartsInPolygon) { if (!wellPathPartInCell.empty()) { int endpointCount = 0; if (wellPathPartInCell.front().z() != HUGE_VAL) ++endpointCount; if (wellPathPartInCell.back().z() != HUGE_VAL) ++endpointCount; cvf::Vec3d intersectionLength = (wellPathPartInCell.back() - wellPathPartInCell.front()); double xLengthInCell = fabs(intersectionLength.x()); double yLengthInCell = fabs(intersectionLength.y()); m_stimPlanCellIdxToIntersectionInfoMap[cIdx].endpointCount += endpointCount; m_stimPlanCellIdxToIntersectionInfoMap[cIdx].hlength += xLengthInCell; m_stimPlanCellIdxToIntersectionInfoMap[cIdx].vlength += yLengthInCell; } } } } }