// // Copyright (C) 2011-2012 Statoil ASA, Ceetron AS // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RiaStdInclude.h" #include "RiaSocketCommand.h" #include "RiaSocketServer.h" #include "RimReservoirView.h" #include "RimResultSlot.h" #include "RimCellEdgeResultSlot.h" #include "RimCellRangeFilterCollection.h" #include "RimCellPropertyFilterCollection.h" #include "RimWellCollection.h" #include "Rim3dOverlayInfoConfig.h" #include "RimReservoirCellResultsCacher.h" #include "RimCase.h" #include "RigCaseData.h" #include "RigCaseCellResultsData.h" #include //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- class RiaGetCellCenters : public RiaSocketCommand { public: static QString commandName () { return QString("GetCellCenters"); } virtual bool interpretCommand(RiaSocketServer* server, const QList& args, QDataStream& socketStream) { int argCaseGroupId = -1; size_t argGridIndex = 0; if (args.size() == 2) { argGridIndex = args[1].toInt(); } else if (args.size() == 3) { argCaseGroupId = args[1].toInt(); argGridIndex = args[2].toUInt(); } RimCase* rimCase = server->findReservoir(argCaseGroupId); if (!rimCase || !rimCase->reservoirData() || (argGridIndex >= rimCase->reservoirData()->gridCount()) ) { // No data available socketStream << (quint64)0 << (quint64)0 << (quint64)0 << (quint64)0 << (quint64)0; return true; } RigGridBase* rigGrid = rimCase->reservoirData()->grid(argGridIndex); quint64 cellCount = (quint64)rigGrid->cellCount(); quint64 cellCountI = (quint64)rigGrid->cellCountI(); quint64 cellCountJ = (quint64)rigGrid->cellCountJ(); quint64 cellCountK = (quint64)rigGrid->cellCountK(); socketStream << cellCount; socketStream << cellCountI; socketStream << cellCountJ; socketStream << cellCountK; size_t doubleValueCount = cellCount * 3; quint64 byteCount = doubleValueCount * sizeof(double); socketStream << byteCount; // This structure is supposed to be received by Octave using a NDArray. The ordering of this loop is // defined by the ordering of the receiving NDArray // // See riGetCellCenters // // dim_vector dv; // dv.resize(4); // dv(0) = cellCountI; // dv(1) = cellCountJ; // dv(2) = cellCountK; // dv(3) = 3; std::vector cellCenterValues(doubleValueCount); cvf::Vec3d cornerVerts[8]; quint64 coordCount = 0; for (int coordIdx = 0; coordIdx < 3; coordIdx++) { for (size_t k = 0; k < cellCountK; k++) { for (size_t j = 0; j < cellCountJ; j++) { for (size_t i = 0; i < cellCountI; i++) { size_t localCellIdx = rigGrid->cellIndexFromIJK(i, j, k); cvf::Vec3d center = rigGrid->cell(localCellIdx).center(); cellCenterValues[coordCount++] = center[coordIdx]; } } } } CVF_ASSERT(coordCount == doubleValueCount); server->currentClient()->write((const char *)cellCenterValues.data(), byteCount); return true; } }; static bool RiaGetCellCenters_init = RiaSocketCommandFactory::instance()->registerCreator(RiaGetCellCenters::commandName()); //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- class RiaGetActiveCellCenters : public RiaSocketCommand { public: static QString commandName () { return QString("GetActiveCellCenters"); } virtual bool interpretCommand(RiaSocketServer* server, const QList& args, QDataStream& socketStream) { int argCaseGroupId = -1; QString porosityModelName; if (args.size() == 2) { bool numberConversionOk = false; int tmpValue = args[1].toInt(&numberConversionOk); if (numberConversionOk) { argCaseGroupId = tmpValue; } else { porosityModelName = args[1]; } } else if (args.size() == 3) { bool numberConversionOk = false; int tmpValue = args[1].toInt(&numberConversionOk); if (numberConversionOk) { argCaseGroupId = args[1].toUInt(); porosityModelName = args[2]; } else { argCaseGroupId = args[2].toUInt(); porosityModelName = args[1]; } } RifReaderInterface::PorosityModelResultType porosityModelEnum = RifReaderInterface::MATRIX_RESULTS; if (porosityModelName.toUpper() == "FRACTURE") { porosityModelEnum = RifReaderInterface::FRACTURE_RESULTS; } RimCase* rimCase = server->findReservoir(argCaseGroupId); if (!rimCase || !rimCase->reservoirData()) { // No data available socketStream << (quint64)0 << (quint64)0 ; return true; } RigActiveCellInfo* actCellInfo = rimCase->reservoirData()->activeCellInfo(porosityModelEnum); RigMainGrid* mainGrid = rimCase->reservoirData()->mainGrid(); size_t activeCellCount = actCellInfo->globalActiveCellCount(); size_t doubleValueCount = activeCellCount * 3; // This structure is supposed to be received by Octave using a NDArray. The ordering of this loop is // defined by the ordering of the receiving NDArray // // See riGetActiveCellCenters // // dim_vector dv; // dv.resize(2); // dv(0) = coordCount; // dv(1) = 3; std::vector cellCenterValues(doubleValueCount); quint64 coordCount = 0; for (int coordIdx = 0; coordIdx < 3; coordIdx++) { for (size_t globalCellIdx = 0; globalCellIdx < mainGrid->cells().size(); globalCellIdx++) { if (!actCellInfo->isActive(globalCellIdx)) continue; cvf::Vec3d center = mainGrid->cells()[globalCellIdx].center(); cellCenterValues[coordCount++] = center[coordIdx]; } } CVF_ASSERT(coordCount == doubleValueCount); socketStream << (quint64)activeCellCount; quint64 byteCount = doubleValueCount * sizeof(double); socketStream << byteCount; server->currentClient()->write((const char *)cellCenterValues.data(), byteCount); return true; } }; static bool RiaGetActiveCellCenters_init = RiaSocketCommandFactory::instance()->registerCreator(RiaGetActiveCellCenters::commandName()); // NB: Match this mapping with the mapping in RifReaderEclipseOutput.cpp static const size_t cellCornerMappingEclipse[8] = { 0, 1, 3, 2, 4, 5, 7, 6 }; //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- class RiaGetCellCorners : public RiaSocketCommand { public: static QString commandName () { return QString("GetCellCorners"); } virtual bool interpretCommand(RiaSocketServer* server, const QList& args, QDataStream& socketStream) { int argCaseGroupId = -1; size_t argGridIndex = 0; if (args.size() == 2) { argGridIndex = args[1].toInt(); } else if (args.size() == 3) { argCaseGroupId = args[1].toInt(); argGridIndex = args[2].toUInt(); } RimCase* rimCase = server->findReservoir(argCaseGroupId); if (!rimCase || !rimCase->reservoirData() || (argGridIndex >= rimCase->reservoirData()->gridCount()) ) { // No data available socketStream << (quint64)0 << (quint64)0 << (quint64)0 << (quint64)0 << (quint64)0; return true; } RigGridBase* rigGrid = rimCase->reservoirData()->grid(argGridIndex); quint64 cellCount = (quint64)rigGrid->cellCount(); quint64 cellCountI = (quint64)rigGrid->cellCountI(); quint64 cellCountJ = (quint64)rigGrid->cellCountJ(); quint64 cellCountK = (quint64)rigGrid->cellCountK(); size_t doubleValueCount = cellCount * 3 * 8; quint64 byteCount = doubleValueCount * sizeof(double); socketStream << cellCount; socketStream << cellCountI; socketStream << cellCountJ; socketStream << cellCountK; socketStream << byteCount; // This structure is supposed to be received by Octave using a NDArray. The ordering of this loop is // defined by the ordering of the receiving NDArray // // See riGetCellCorners // // dim_vector dv; // dv.resize(5); // dv(0) = cellCountI; // dv(1) = cellCountJ; // dv(2) = cellCountK; // dv(3) = 8; // dv(4) = 3; std::vector cellCornerValues(doubleValueCount); cvf::Vec3d cornerVerts[8]; quint64 coordCount = 0; for (int coordIdx = 0; coordIdx < 3; coordIdx++) { for (size_t cornerIdx = 0; cornerIdx < 8; cornerIdx++) { size_t cornerIndexMapping = cellCornerMappingEclipse[cornerIdx]; for (size_t k = 0; k < cellCountK; k++) { for (size_t j = 0; j < cellCountJ; j++) { for (size_t i = 0; i < cellCountI; i++) { size_t localCellIdx = rigGrid->cellIndexFromIJK(i, j, k); rigGrid->cellCornerVertices(localCellIdx, cornerVerts); cellCornerValues[coordCount++] = cornerVerts[cornerIndexMapping][coordIdx]; } } } } } server->currentClient()->write((const char *)cellCornerValues.data(), byteCount); return true; } }; static bool RiaGetCellCorners_init = RiaSocketCommandFactory::instance()->registerCreator(RiaGetCellCorners::commandName()); //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- class RiaGetActiveCellCorners : public RiaSocketCommand { public: static QString commandName () { return QString("GetActiveCellCorners"); } virtual bool interpretCommand(RiaSocketServer* server, const QList& args, QDataStream& socketStream) { int argCaseGroupId = -1; QString porosityModelName; if (args.size() == 2) { bool numberConversionOk = false; int tmpValue = args[1].toInt(&numberConversionOk); if (numberConversionOk) { argCaseGroupId = tmpValue; } else { porosityModelName = args[1]; } } else if (args.size() == 3) { bool numberConversionOk = false; int tmpValue = args[1].toInt(&numberConversionOk); if (numberConversionOk) { argCaseGroupId = args[1].toUInt(); porosityModelName = args[2]; } else { argCaseGroupId = args[2].toUInt(); porosityModelName = args[1]; } } RifReaderInterface::PorosityModelResultType porosityModelEnum = RifReaderInterface::MATRIX_RESULTS; if (porosityModelName.toUpper() == "FRACTURE") { porosityModelEnum = RifReaderInterface::FRACTURE_RESULTS; } RimCase* rimCase = server->findReservoir(argCaseGroupId); if (!rimCase || !rimCase->reservoirData() ) { // No data available socketStream << (quint64)0 << (quint64)0 ; return true; } RigActiveCellInfo* actCellInfo = rimCase->reservoirData()->activeCellInfo(porosityModelEnum); RigMainGrid* mainGrid = rimCase->reservoirData()->mainGrid(); size_t activeCellCount = actCellInfo->globalActiveCellCount(); size_t doubleValueCount = activeCellCount * 3 * 8; // This structure is supposed to be received by Octave using a NDArray. The ordering of this loop is // defined by the ordering of the receiving NDArray // // See riGetCellCorners // // dim_vector dv; // dv.resize(3); // dv(0) = coordCount; // dv(1) = 8; // dv(2) = 3; std::vector cellCornerValues(doubleValueCount); cvf::Vec3d cornerVerts[8]; quint64 coordCount = 0; for (int coordIdx = 0; coordIdx < 3; coordIdx++) { for (size_t cornerIdx = 0; cornerIdx < 8; cornerIdx++) { size_t cornerIndexMapping = cellCornerMappingEclipse[cornerIdx]; for (size_t globalCellIdx = 0; globalCellIdx < mainGrid->cells().size(); globalCellIdx++) { if (!actCellInfo->isActive(globalCellIdx)) continue; mainGrid->cellCornerVertices(globalCellIdx, cornerVerts); cellCornerValues[coordCount++] = cornerVerts[cornerIndexMapping][coordIdx]; } } } socketStream << (quint64)activeCellCount; quint64 byteCount = doubleValueCount * sizeof(double); socketStream << byteCount; server->currentClient()->write((const char *)cellCornerValues.data(), byteCount); return true; } }; static bool RiaGetActiveCellCorners_init = RiaSocketCommandFactory::instance()->registerCreator(RiaGetActiveCellCorners::commandName());