///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) Statoil ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigVirtualPerforationTransmissibilities.h" #include "RigStatisticsMath.h" //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- CompletionDataFrame::CompletionDataFrame() {} //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void CompletionDataFrame::setCompletionData(const std::vector& completions) { for (auto& completion : completions) { auto it = m_multipleCompletionsPerEclipseCell.find(completion.completionDataGridCell().globalCellIndex()); if (it != m_multipleCompletionsPerEclipseCell.end()) { it->second.push_back(completion); } else { m_multipleCompletionsPerEclipseCell.insert(std::pair>( completion.completionDataGridCell().globalCellIndex(), std::vector{completion})); } } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::map>& CompletionDataFrame::multipleCompletionsPerEclipseCell() const { return m_multipleCompletionsPerEclipseCell; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigVirtualPerforationTransmissibilities::RigVirtualPerforationTransmissibilities() {} //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigVirtualPerforationTransmissibilities::~RigVirtualPerforationTransmissibilities() {} //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigVirtualPerforationTransmissibilities::setCompletionDataForWellPath( const RimWellPath* wellPath, const std::vector>& completionsPerTimeStep) { auto item = m_mapFromWellToCompletionData.find(wellPath); CVF_ASSERT(item == m_mapFromWellToCompletionData.end()); { std::vector values; for (const auto& c : completionsPerTimeStep) { CompletionDataFrame oneTimeStep; oneTimeStep.setCompletionData(c); values.push_back(oneTimeStep); } auto pair = std::pair>(wellPath, values); m_mapFromWellToCompletionData.insert(pair); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::map>& RigVirtualPerforationTransmissibilities::multipleCompletionsPerEclipseCell(const RimWellPath* wellPath, size_t timeStepIndex) const { static std::map> dummy; auto item = m_mapFromWellToCompletionData.find(wellPath); if (item != m_mapFromWellToCompletionData.end()) { size_t indexToUse = timeStepIndex; if (item->second.size() == 1) { indexToUse = 0; } return item->second[indexToUse].multipleCompletionsPerEclipseCell(); } return dummy; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigVirtualPerforationTransmissibilities::setCompletionDataForSimWell( const RigSimWellData* simWellData, const std::vector>& completionsPerTimeStep) { m_mapFromSimWellToCompletionData[simWellData] = completionsPerTimeStep; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- const std::vector& RigVirtualPerforationTransmissibilities::completionsForSimWell(const RigSimWellData* simWellData, size_t timeStepIndex) const { static std::vector dummayVector; auto item = m_mapFromSimWellToCompletionData.find(simWellData); if (item != m_mapFromSimWellToCompletionData.end()) { return item->second[timeStepIndex]; } return dummayVector; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigVirtualPerforationTransmissibilities::computeMinMax(double* minValue, double* maxValue, double* posClosestToZero, double* negClosestToZero) const { MinMaxAccumulator minMaxAccumulator; PosNegAccumulator posNegAccumulator; for (const auto& item : m_mapFromWellToCompletionData) { auto dataForWellPath = item.second; for (const auto& timeStepFrame : dataForWellPath) { for (const auto& allCompletionsForWell : timeStepFrame.multipleCompletionsPerEclipseCell()) { for (const auto& completionData : allCompletionsForWell.second) { double transmissibility = completionData.transmissibility(); minMaxAccumulator.addValue(transmissibility); posNegAccumulator.addValue(transmissibility); } } } } for (const auto& item : m_mapFromSimWellToCompletionData) { auto dataForSimWell = item.second; for (const auto& timeStepFrame : dataForSimWell) { for (const auto& completionData : timeStepFrame) { double transmissibility = completionData.transmissibility(); minMaxAccumulator.addValue(transmissibility); posNegAccumulator.addValue(transmissibility); } } } if (*minValue) *minValue = minMaxAccumulator.min; if (*maxValue) *maxValue = minMaxAccumulator.max; if (*posClosestToZero) *posClosestToZero = posNegAccumulator.pos; if (*negClosestToZero) *negClosestToZero = posNegAccumulator.neg; }