#include "RigGeoMechBoreHoleStressCalculator.h" //================================================================================================== /// Internal root finding class to find a Well Pressure that gives: /// a) a zero SigmaT for estimating the fracture gradient. /// b) a solution to the Stassi-d'Alia failure criterion for estimating the shear failure gradient. //================================================================================================== //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigGeoMechBoreHoleStressCalculator::RigGeoMechBoreHoleStressCalculator(const caf::Ten3d& tensor, double porePressure, double poissonRatio, double uniaxialCompressiveStrength, int nThetaSubSamples) : m_tensor(tensor) , m_porePressure(porePressure) , m_poissonRatio(poissonRatio) , m_uniaxialCompressiveStrength(uniaxialCompressiveStrength) , m_nThetaSubSamples(nThetaSubSamples) { calculateStressComponents(); } //-------------------------------------------------------------------------------------------------- /// Simple bisection method for now //-------------------------------------------------------------------------------------------------- double RigGeoMechBoreHoleStressCalculator::solveFractureGradient(double* thetaOut) { MemberFunc fn = &RigGeoMechBoreHoleStressCalculator::sigmaTMinOfMin; return solveSecant(fn, thetaOut); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigGeoMechBoreHoleStressCalculator::solveStassiDalia(double* thetaOut) { MemberFunc fn = &RigGeoMechBoreHoleStressCalculator::stassiDalia; return solveSecant(fn, thetaOut); } //-------------------------------------------------------------------------------------------------- /// Bi-section root finding method: https://en.wikipedia.org/wiki/Bisection_method /// Used as fall-back in case the secant method doesn't converge. //-------------------------------------------------------------------------------------------------- double RigGeoMechBoreHoleStressCalculator::solveBisection(double minPw, double maxPw, MemberFunc fn, double* thetaOut) { const int N = 50; const double epsilon = 1.0e-10; double theta = 0.0; std::pair largestNegativeValue(0.0, -std::numeric_limits::infinity()); std::pair smallestPositiveValue (0.0, std::numeric_limits::infinity()); for (int i = 0; i <= N; ++i) { double pw = minPw + (maxPw - minPw) * i / static_cast(N); double f_pw = (this->*fn)(pw, &theta); if (f_pw >= 0.0 && f_pw < smallestPositiveValue.second) { smallestPositiveValue = std::make_pair(pw, f_pw); } if (f_pw < 0.0 && f_pw > largestNegativeValue.second) { largestNegativeValue = std::make_pair(pw, f_pw); } } // TODO: Provide a warning if there was no solution to the equation if (largestNegativeValue.second == -std::numeric_limits::infinity()) { // No solution. Function is always positive. Pick smallest value. return smallestPositiveValue.first; } if (smallestPositiveValue.second == std::numeric_limits::infinity()) { // No solution. Function is always negative. Pick largest value. return largestNegativeValue.first; } minPw = largestNegativeValue.first; double minPwFuncVal = largestNegativeValue.second; maxPw = smallestPositiveValue.first; double maxPwFuncVal = smallestPositiveValue.second; double range = std::abs(maxPw - minPw); int i = 0; for (; i <= N && range > m_porePressure * epsilon; ++i) { double midPw = (minPw + maxPw) * 0.5; double midPwFuncVal = (this->*fn)(midPw, &theta); if (midPwFuncVal * minPwFuncVal < 0.0) { maxPw = midPw; maxPwFuncVal = midPwFuncVal; } else { minPw = midPw; minPwFuncVal = midPwFuncVal; } range = std::abs(maxPw - minPw); } CVF_ASSERT(i < N); // Otherwise it hasn't converged if (thetaOut) { *thetaOut = theta; } // Return average of minPw and maxPw. return 0.5 * (maxPw + minPw); } //-------------------------------------------------------------------------------------------------- /// Secant root finding method: https://en.wikipedia.org/wiki/Secant_method /// Basically a Newton's method using finite differences for the derivative. //-------------------------------------------------------------------------------------------------- double RigGeoMechBoreHoleStressCalculator::solveSecant(MemberFunc fn, double* thetaOut) { const double epsilon = 1.0e-10; const int N = 50; double theta = 0.0; double x_0 = 0.0; double f_x0 = (this->*fn)(x_0, &theta); double x_1 = m_porePressure; double f_x1 = (this->*fn)(x_1, &theta); double x = 0.0; double f_x = 0.0; int i = 0; for (; i <= N && std::abs(f_x1 - f_x0) > epsilon; ++i) { x = x_1 - f_x1 * (x_1 - x_0) / (f_x1 - f_x0); f_x = (this->*fn)(x, &theta); if (std::abs(f_x) < epsilon * m_porePressure) break; // Update iteration variables x_0 = x_1; f_x0 = f_x1; x_1 = x; f_x1 = f_x; } if (i == N || std::abs(f_x) > epsilon * m_porePressure) { // Fallback to bisection if secant doesn't converge or converged to a wrong solution. return solveBisection(0.0, m_porePressure * 2.0, fn, thetaOut); } if (thetaOut) { *thetaOut = theta; } return x; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigGeoMechBoreHoleStressCalculator::sigmaTMinOfMin(double wellPressure, double* thetaAtMin) const { CVF_ASSERT(thetaAtMin); double sigma_t_min_min = std::numeric_limits::max(); for (const cvf::Vec4d& stressComponentsForAngle : m_stressComponents) { // Perform all these internal calculations in double to reduce significance errors double sigma_theta = stressComponentsForAngle[1] - wellPressure; const double& sigma_z = stressComponentsForAngle[2]; double tauSqrx4 = std::pow(stressComponentsForAngle[3], 2) * 4.0; double sigma_t_min = 0.5 * ((sigma_z + sigma_theta) - std::sqrt(std::pow(sigma_z - sigma_theta, 2) + tauSqrx4)) - m_porePressure; if (sigma_t_min < sigma_t_min_min) { sigma_t_min_min = sigma_t_min; *thetaAtMin = stressComponentsForAngle[0]; } } return sigma_t_min_min; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigGeoMechBoreHoleStressCalculator::stassiDalia(double wellPressure, double* thetaAtMin) const { CVF_ASSERT(thetaAtMin); double minStassiDalia = std::numeric_limits::max(); for (const cvf::Vec4d& stressComponentsForAngle : m_stressComponents) { double sigma_theta = stressComponentsForAngle[1] - wellPressure; const double& sigma_z = stressComponentsForAngle[2]; double tauSqrx4 = std::pow(stressComponentsForAngle[3], 2) * 4.0; double sigma_1 = wellPressure - m_porePressure; double sigma_2 = 0.5 * ((sigma_z + sigma_theta) + std::sqrt(std::pow(sigma_z - sigma_theta, 2) + tauSqrx4)) - m_porePressure; double sigma_3 = 0.5 * ((sigma_z + sigma_theta) - std::sqrt(std::pow(sigma_z - sigma_theta, 2) + tauSqrx4)) - m_porePressure; double stassiDalia = std::pow(sigma_1 - sigma_2, 2) + std::pow(sigma_2 - sigma_3, 2) + std::pow(sigma_1 - sigma_3, 2) - 2 * m_uniaxialCompressiveStrength * (sigma_1 + sigma_2 + sigma_3); if (stassiDalia < minStassiDalia) { minStassiDalia = stassiDalia; *thetaAtMin = stressComponentsForAngle[0]; } } return minStassiDalia; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigGeoMechBoreHoleStressCalculator::calculateStressComponents() { m_stressComponents.reserve(m_nThetaSubSamples); for (int i = 0; i < m_nThetaSubSamples; ++i) { double theta = (i *cvf::PI_F) / (m_nThetaSubSamples - 1.0); cvf::Vec4d stressComponentsForAngle = calculateStressComponentsForSegmentAngle(theta); m_stressComponents.push_back(stressComponentsForAngle); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::Vec4d RigGeoMechBoreHoleStressCalculator::calculateStressComponentsForSegmentAngle(double theta) const { cvf::Vec4d stressComponents; const double& sx = m_tensor[caf::Ten3d::SXX]; const double& sy = m_tensor[caf::Ten3d::SYY]; const double& sz = m_tensor[caf::Ten3d::SZZ]; const double& txy = m_tensor[caf::Ten3d::SXY]; const double& txz = m_tensor[caf::Ten3d::SZX]; const double& tyz = m_tensor[caf::Ten3d::SYZ]; stressComponents[0] = theta; stressComponents[1] = sx + sy - 2 * (sx - sy) * cos(2 * theta) - 4 * txy * sin(2 * theta); stressComponents[2] = sz - m_poissonRatio * (2 * (sx - sy) * cos(2 * theta) + 4 * txy * sin(2 * theta)); stressComponents[3] = 2 * (tyz * cos(theta) - txz * sin(theta)); return stressComponents; }