///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2017 Statoil ASA // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RivWellFracturePartMgr.h" #include "RiaApplication.h" #include "RigFractureGrid.h" #include "RigMainGrid.h" #include "RigHexIntersectionTools.h" #include "RigCellGeometryTools.h" #include "RigFractureCell.h" #include "RimEclipseView.h" #include "RimFracture.h" #include "RimFractureContainment.h" #include "RimFractureTemplate.h" #include "RimLegendConfig.h" #include "RimStimPlanColors.h" #include "RimStimPlanFractureTemplate.h" #include "RivFaultGeometryGenerator.h" #include "RivPartPriority.h" #include "RivObjectSourceInfo.h" #include "cafDisplayCoordTransform.h" #include "cafEffectGenerator.h" #include "cvfDrawableGeo.h" #include "cvfGeometryTools.h" #include "cvfModelBasicList.h" #include "cvfPart.h" #include "cvfPrimitiveSet.h" #include "cvfPrimitiveSetDirect.h" #include "cvfPrimitiveSetIndexedUInt.h" #include "cvfScalarMapperContinuousLinear.h" #include "cvfRenderStateDepth.h" #include //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RivWellFracturePartMgr::RivWellFracturePartMgr(RimFracture* fracture) : m_rimFracture(fracture) { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RivWellFracturePartMgr::~RivWellFracturePartMgr() { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RivWellFracturePartMgr::generateSurfacePart(const caf::DisplayCoordTransform* displayCoordTransform) { if (m_surfacePart.notNull()) return; if (!displayCoordTransform) return; if (m_rimFracture) { std::vector nodeCoords; std::vector triangleIndices; m_rimFracture->triangleGeometry(&triangleIndices, &nodeCoords); std::vector displayCoords; for (size_t i = 0; i < nodeCoords.size(); i++) { cvf::Vec3d nodeCoordsDouble = static_cast(nodeCoords[i]); cvf::Vec3d displayCoordsDouble = displayCoordTransform->transformToDisplayCoord(nodeCoordsDouble); displayCoords.push_back(static_cast(displayCoordsDouble)); } if (triangleIndices.size() == 0 || displayCoords.size() == 0) { return; } cvf::ref geo = buildDrawableGeoFromTriangles(triangleIndices, displayCoords); CVF_ASSERT(geo.notNull()); m_surfacePart = new cvf::Part(0, "FractureSurfacePart"); m_surfacePart->setDrawable(geo.p()); m_surfacePart->setSourceInfo(new RivObjectSourceInfo(m_rimFracture)); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RivWellFracturePartMgr::generateContainmentMaskPart(const RimEclipseView* activeView) { std::vector borderPolygonLocalCS = m_rimFracture->fractureTemplate()->fractureBorderPolygon(m_rimFracture->fractureUnit()); cvf::Mat4d frMx = m_rimFracture->transformMatrix(); cvf::BoundingBox frBBox; std::vector borderPolygonGlobCs; std::vector borderPolygonLocalCsd; for (const auto& pv: borderPolygonLocalCS) { cvf::Vec3d pvd(pv); borderPolygonLocalCsd.push_back(pvd); pvd.transformPoint(frMx); borderPolygonGlobCs.push_back(pvd); frBBox.add(pvd); } std::vector cellCandidates; activeView->mainGrid()->findIntersectingCells(frBBox, &cellCandidates); auto displCoordTrans = activeView->displayCoordTransform(); std::vector maskTriangles; for (size_t resCellIdx : cellCandidates) { if (!m_rimFracture->isEclipseCellWithinContainment(activeView->mainGrid(), resCellIdx)) { // Calculate Eclipse cell intersection with fracture plane std::array corners; activeView->mainGrid()->cellCornerVertices(resCellIdx, corners.data()); std::vector > eclCellPolygons; bool hasIntersection = RigHexIntersectionTools::planeHexIntersectionPolygons(corners, frMx, eclCellPolygons); if (!hasIntersection || eclCellPolygons.empty()) continue; // Transform eclCell - plane intersection onto fracture cvf::Mat4d invertedTransformMatrix = frMx.getInverted(); for ( std::vector& eclCellPolygon : eclCellPolygons ) { for ( cvf::Vec3d& v : eclCellPolygon ) { v.transformPoint(invertedTransformMatrix); } } cvf::Vec3d fractureNormal = cvf::Vec3d(frMx.col(2)); cvf::Vec3d maskOffset = fractureNormal * 0.01 * frBBox.radius(); for (const std::vector& eclCellPolygon : eclCellPolygons) { // Clip Eclipse cell polygon with fracture border std::vector< std::vector > clippedPolygons = RigCellGeometryTools::intersectPolygons(eclCellPolygon, borderPolygonLocalCsd); for (auto& clippedPolygon : clippedPolygons) { for (auto& v: clippedPolygon) { v.transformPoint(frMx); } } // Create triangles from the clipped polygons for (auto& clippedPolygon : clippedPolygons) { cvf::EarClipTesselator tess; tess.setNormal(fractureNormal); cvf::Vec3dArray cvfNodes(clippedPolygon); tess.setGlobalNodeArray(cvfNodes); std::vector polyIndexes; for (size_t idx = 0; idx < clippedPolygon.size(); ++idx) polyIndexes.push_back(idx); tess.setPolygonIndices(polyIndexes); std::vector triangleIndices; tess.calculateTriangles(&triangleIndices); for (size_t idx: triangleIndices) { maskTriangles.push_back( cvf::Vec3f( displCoordTrans->transformToDisplayCoord(clippedPolygon[idx] + maskOffset)) ); } for (size_t idx: triangleIndices) { maskTriangles.push_back( cvf::Vec3f( displCoordTrans->transformToDisplayCoord(clippedPolygon[idx] - maskOffset)) ); } } } } } if ( maskTriangles.size() >= 3 ) { cvf::ref maskTriangleGeo = new cvf::DrawableGeo; maskTriangleGeo->setVertexArray(new cvf::Vec3fArray(maskTriangles)); cvf::ref primitives = new cvf::PrimitiveSetDirect(cvf::PT_TRIANGLES); primitives->setIndexCount(maskTriangles.size()); maskTriangleGeo->addPrimitiveSet(primitives.p()); maskTriangleGeo->computeNormals(); m_containmentMaskPart = new cvf::Part(0, "FractureContainmentMaskPart"); m_containmentMaskPart->setDrawable(maskTriangleGeo.p()); m_containmentMaskPart->setSourceInfo(new RivObjectSourceInfo(m_rimFracture)); cvf::Color4f maskColor = cvf::Color4f(cvf::Color3f(cvf::Color3::GRAY)); caf::SurfaceEffectGenerator surfaceGen(maskColor, caf::PO_NONE); cvf::ref eff = surfaceGen.generateCachedEffect(); m_containmentMaskPart->setEffect(eff.p()); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RivWellFracturePartMgr::applyFractureUniformColor(const RimEclipseView* activeView) { if ( m_surfacePart.notNull() ) { cvf::Color4f fractureColor = cvf::Color4f(cvf::Color3f(cvf::Color3::BROWN)); if ( activeView ) { fractureColor = cvf::Color4f(activeView->stimPlanColors->defaultColor()); } caf::SurfaceEffectGenerator surfaceGen(fractureColor, caf::PO_1); cvf::ref eff = surfaceGen.generateCachedEffect(); m_surfacePart->setEffect(eff.p()); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RivWellFracturePartMgr::applyResultTextureColor(const RimEclipseView* activeView) { if (m_surfacePart.isNull()) return; if (m_rimFracture) { RimLegendConfig* legendConfig = nullptr; if (activeView && activeView->stimPlanColors()) { if (activeView->stimPlanColors()->isChecked()) { legendConfig = activeView->stimPlanColors()->activeLegend(); } } RimFractureTemplate* fracTemplate = m_rimFracture->fractureTemplate(); RimStimPlanFractureTemplate* stimPlanFracTemplate = dynamic_cast(fracTemplate); if (!stimPlanFracTemplate) { return; } float opacityLevel = activeView->stimPlanColors->opacityLevel(); if (legendConfig) { cvf::ScalarMapper* scalarMapper = legendConfig->scalarMapper(); cvf::DrawableGeo* geo = dynamic_cast (m_surfacePart->drawable()); cvf::ref textureCoords = new cvf::Vec2fArray; textureCoords->resize(geo->vertexCount()); int timeStepIndex = stimPlanFracTemplate->activeTimeStepIndex(); std::vector > dataToPlot = stimPlanFracTemplate->resultValues(activeView->stimPlanColors->resultName(), activeView->stimPlanColors->unit(), timeStepIndex); int i = 0; for (const std::vector& depthData : dataToPlot) { std::vector mirroredValuesAtDepth = mirrorDataAtSingleDepth(depthData); for (double gridXdata : mirroredValuesAtDepth) { cvf::Vec2f texCoord = scalarMapper->mapToTextureCoord(gridXdata); if (gridXdata > 1e-7) { texCoord[1] = 0; // Set the Y texture coordinate to the opaque line in the texture } textureCoords->set(i, texCoord); i++; } } geo->setTextureCoordArray(textureCoords.p()); caf::ScalarMapperEffectGenerator effGen(scalarMapper, caf::PO_1); effGen.setOpacityLevel(0.5); effGen.discardTransparentFragments(true); if (activeView && activeView->isLightingDisabled()) { effGen.disableLighting(true); } cvf::ref eff = effGen.generateCachedEffect(); m_surfacePart->setEffect(eff.p()); m_surfacePart->setPriority(RivPartPriority::PartType::Transparent); } else { applyFractureUniformColor(activeView); } } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RivWellFracturePartMgr::generateFractureOutlinePolygonPart(const caf::DisplayCoordTransform* displayCoordTransform) { m_polygonPart = nullptr; cvf::ref polygonGeo = createPolygonDrawable(displayCoordTransform); if (polygonGeo.notNull()) { m_polygonPart = new cvf::Part(0, "FractureOutline"); m_polygonPart->setDrawable(polygonGeo.p()); m_polygonPart->updateBoundingBox(); m_polygonPart->setPriority(RivPartPriority::PartType::TransparentMeshLines); caf::MeshEffectGenerator lineEffGen(cvf::Color3::MAGENTA); lineEffGen.setLineWidth(3.0f); cvf::ref eff = lineEffGen.generateCachedEffect(); m_polygonPart->setEffect(eff.p()); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RivWellFracturePartMgr::generateStimPlanMeshPart(const caf::DisplayCoordTransform* displayCoordTransform, const RimEclipseView* activeView) { m_stimPlanMeshPart = nullptr; if (!m_rimFracture->fractureTemplate()) return; RimStimPlanFractureTemplate* stimPlanFracTemplate = dynamic_cast(m_rimFracture->fractureTemplate()); if (!stimPlanFracTemplate) return; cvf::ref stimPlanMeshGeo = createStimPlanMeshDrawable(stimPlanFracTemplate, displayCoordTransform, activeView); if (stimPlanMeshGeo.notNull()) { m_stimPlanMeshPart = new cvf::Part(0, "StimPlanMesh"); m_stimPlanMeshPart->setDrawable(stimPlanMeshGeo.p()); m_stimPlanMeshPart->updateBoundingBox(); m_stimPlanMeshPart->setPriority(RivPartPriority::PartType::TransparentMeshLines); caf::MeshEffectGenerator lineEffGen(cvf::Color3::BLACK); lineEffGen.setLineWidth(1.0f); cvf::ref eff = lineEffGen.generateCachedEffect(); m_stimPlanMeshPart->setEffect(eff.p()); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::ref RivWellFracturePartMgr::createStimPlanMeshDrawable(RimStimPlanFractureTemplate* stimPlanFracTemplate, const caf::DisplayCoordTransform* displayCoordTransform, const RimEclipseView* activeView) { //TODO: This is needed to avoid errors when loading project with stimPlan fractures with multipled timesteps. //Should probably be moved, since it now is called twice in some cases... stimPlanFracTemplate->updateFractureGrid(); std::vector stimPlanCells = stimPlanFracTemplate->fractureGrid()->fractureCells(); std::vector stimPlanMeshVertices; QString resultNameFromColors = activeView->stimPlanColors->resultName(); QString resultUnitFromColors = activeView->stimPlanColors->unit(); std::vector prCellResults = stimPlanFracTemplate->fractureGridResults(resultNameFromColors, resultUnitFromColors, stimPlanFracTemplate->activeTimeStepIndex()); for ( size_t cIdx = 0; cIdx < stimPlanCells.size() ; ++cIdx) { if (prCellResults[cIdx] > 1e-7) { const RigFractureCell& stimPlanCell = stimPlanCells[cIdx]; std::vector stimPlanCellPolygon = stimPlanCell.getPolygon(); for (cvf::Vec3d cellCorner : stimPlanCellPolygon) { stimPlanMeshVertices.push_back(static_cast(cellCorner)); } } } if (stimPlanMeshVertices.size() == 0) { return nullptr; } cvf::Mat4d fractureXf = m_rimFracture->transformMatrix(); std::vector stimPlanMeshVerticesDisplayCoords = transfromToFractureDisplayCoords(stimPlanMeshVertices, fractureXf, displayCoordTransform); cvf::Vec3fArray* stimPlanMeshVertexList; stimPlanMeshVertexList = new cvf::Vec3fArray; stimPlanMeshVertexList->assign(stimPlanMeshVerticesDisplayCoords); cvf::ref stimPlanMeshGeo = new cvf::DrawableGeo; stimPlanMeshGeo->setVertexArray(stimPlanMeshVertexList); cvf::ref indices = RivFaultGeometryGenerator::lineIndicesFromQuadVertexArray(stimPlanMeshVertexList); cvf::ref prim = new cvf::PrimitiveSetIndexedUInt(cvf::PT_LINES); prim->setIndices(indices.p()); stimPlanMeshGeo->addPrimitiveSet(prim.p()); return stimPlanMeshGeo; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RivWellFracturePartMgr::getPolygonBB(float &polygonXmin, float &polygonXmax, float &polygonYmin, float &polygonYmax) { std::vector polygon = m_rimFracture->fractureTemplate()->fractureBorderPolygon(m_rimFracture->fractureUnit()); if (polygon.size() > 1) { polygonXmin = polygon[0].x(); polygonXmax = polygon[0].x(); polygonYmin = polygon[0].y(); polygonYmax = polygon[0].y(); } for (cvf::Vec3f v : polygon) { if (v.x() < polygonXmin) polygonXmin = v.x(); if (v.x() > polygonXmax) polygonXmax = v.x(); if (v.y() < polygonYmin) polygonYmin = v.y(); if (v.y() > polygonYmax) polygonYmax = v.y(); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::ref RivWellFracturePartMgr::createPolygonDrawable(const caf::DisplayCoordTransform* displayCoordTransform) { std::vector lineIndices; std::vector vertices; { std::vector polygon = m_rimFracture->fractureTemplate()->fractureBorderPolygon(m_rimFracture->fractureUnit()); cvf::Mat4d m = m_rimFracture->transformMatrix(); std::vector polygonDisplayCoords = transfromToFractureDisplayCoords(polygon, m, displayCoordTransform); for (size_t i = 0; i < polygonDisplayCoords.size(); ++i) { vertices.push_back(cvf::Vec3f(polygonDisplayCoords[i])); if (i < polygonDisplayCoords.size() - 1) { lineIndices.push_back(static_cast(i)); lineIndices.push_back(static_cast(i + 1)); } } } if (vertices.size() == 0) return nullptr; cvf::ref vx = new cvf::Vec3fArray; vx->assign(vertices); cvf::ref idxes = new cvf::UIntArray; idxes->assign(lineIndices); cvf::ref prim = new cvf::PrimitiveSetIndexedUInt(cvf::PT_LINES); prim->setIndices(idxes.p()); cvf::ref polygonGeo = new cvf::DrawableGeo; polygonGeo->setVertexArray(vx.p()); polygonGeo->addPrimitiveSet(prim.p()); return polygonGeo; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RivWellFracturePartMgr::transfromToFractureDisplayCoords(const std::vector& coordinatesVector, cvf::Mat4d m, const caf::DisplayCoordTransform* displayCoordTransform) { std::vector polygonInDisplayCoords; polygonInDisplayCoords.reserve(coordinatesVector.size()); for (const cvf::Vec3f& v : coordinatesVector) { cvf::Vec3d vd(v); vd.transformPoint(m); cvf::Vec3d displayCoordsDouble = displayCoordTransform->transformToDisplayCoord(vd); polygonInDisplayCoords.push_back(cvf::Vec3f(displayCoordsDouble)); } return polygonInDisplayCoords; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RivWellFracturePartMgr::mirrorDataAtSingleDepth(std::vector depthData) { std::vector mirroredValuesAtGivenDepth; mirroredValuesAtGivenDepth.push_back(depthData[0]); for (size_t i = 1; i < (depthData.size()); i++) //starting at 1 since we don't want center value twice { double valueAtGivenX = depthData[i]; mirroredValuesAtGivenDepth.insert(mirroredValuesAtGivenDepth.begin(), valueAtGivenX); mirroredValuesAtGivenDepth.push_back(valueAtGivenX); } return mirroredValuesAtGivenDepth; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RivWellFracturePartMgr::appendGeometryPartsToModel(cvf::ModelBasicList* model, const RimEclipseView* eclView) { clearGeometryCache(); if (!m_rimFracture->isChecked()) return; RimStimPlanFractureTemplate* stimPlanFracTemplate = dynamic_cast(m_rimFracture->fractureTemplate()); auto displayCoordTransform = eclView->displayCoordTransform(); if (m_surfacePart.isNull()) { if (m_rimFracture->fractureTemplate()) { if (stimPlanFracTemplate) { generateSurfacePart(displayCoordTransform.p()); generateFractureOutlinePolygonPart(displayCoordTransform.p()); applyResultTextureColor(eclView); if (stimPlanFracTemplate->showStimPlanMesh()) { generateStimPlanMeshPart(displayCoordTransform.p(), eclView); } } else // Ellipse { generateSurfacePart(displayCoordTransform.p()); applyFractureUniformColor(eclView); } if (m_rimFracture->fractureTemplate()->fractureContainment()->isEnabled()) { generateContainmentMaskPart(eclView); } else { m_containmentMaskPart = nullptr; } } } if (m_surfacePart.notNull()) { model->addPart(m_surfacePart.p()); } if (m_stimPlanMeshPart.notNull() && stimPlanFracTemplate->showStimPlanMesh()) { model->addPart(m_stimPlanMeshPart.p()); } if (stimPlanFracTemplate && m_rimFracture->showPolygonFractureOutline() && m_polygonPart.notNull()) { model->addPart(m_polygonPart.p()); } if (m_containmentMaskPart.notNull()) { model->addPart(m_containmentMaskPart.p()); } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RivWellFracturePartMgr::clearGeometryCache() { m_surfacePart = nullptr; m_polygonPart = nullptr; m_stimPlanMeshPart = nullptr; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::ref RivWellFracturePartMgr::buildDrawableGeoFromTriangles(const std::vector& triangleIndices, const std::vector& nodeCoords) { CVF_ASSERT(triangleIndices.size() > 0); CVF_ASSERT(nodeCoords.size() > 0); cvf::ref geo = new cvf::DrawableGeo; cvf::ref indices = new cvf::UIntArray(triangleIndices); cvf::ref vertices = new cvf::Vec3fArray(nodeCoords); geo->setVertexArray(vertices.p()); geo->addPrimitiveSet(new cvf::PrimitiveSetIndexedUInt(cvf::PT_TRIANGLES, indices.p())); geo->computeNormals(); return geo; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RivWellFracturePartMgr::stimPlanCellTouchesPolygon(const std::vector& polygon, double xMin, double xMax, double yMin, double yMax, float polygonXmin, float polygonXmax, float polygonYmin, float polygonYmax) { if (static_cast(xMin) > polygonXmin && static_cast(xMax) < polygonXmax) { if (static_cast(yMin) > polygonYmin && static_cast(yMax) < polygonYmax) { return true; } } for (cvf::Vec3f v : polygon) { if (v.x() > xMin && v.x() < xMax) { if (v.y() > yMin && v.y() < yMax) { return true; } } } return false; }