///////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2011-2012 Statoil ASA, Ceetron AS // // ResInsight is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. // // See the GNU General Public License at // for more details. // ///////////////////////////////////////////////////////////////////////////////// #include "RigWellPath.h" #include "cvfGeometryTools.h" #include "cvfBoundingBox.h" #include "cvfPlane.h" //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- RigWellPath::RigWellPath() : m_hasDatumElevation(false), m_datumElevation(0.0) { } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigWellPath::setDatumElevation(double value) { m_hasDatumElevation = true; m_datumElevation = value; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RigWellPath::hasDatumElevation() const { return m_hasDatumElevation; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigWellPath::datumElevation() const { return m_datumElevation; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigWellPath::rkbDiff() const { if (hasDatumElevation()) { return datumElevation(); } // If measured depth is zero, use the z-value of the well path points if (m_wellPathPoints.size() > 0 && m_measuredDepths.size() > 0) { double epsilon = 1e-3; if (cvf::Math::abs(m_measuredDepths[0]) < epsilon) { double diff = m_measuredDepths[0] - (-wellPathPoints()[0].z()); return diff; } } return HUGE_VAL; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- cvf::Vec3d RigWellPath::interpolatedVectorValuesAlongWellPath(const std::vector& vectorValuesAlongWellPath, double measuredDepth, double * horizontalLengthAlongWellToStartClipPoint /*= nullptr*/) const { CVF_ASSERT(vectorValuesAlongWellPath.size() == m_wellPathPoints.size()); cvf::Vec3d interpolatedVector = cvf::Vec3d::ZERO; if (horizontalLengthAlongWellToStartClipPoint) *horizontalLengthAlongWellToStartClipPoint = 0.0; size_t vxIdx = 0; while ( vxIdx < m_measuredDepths.size() && m_measuredDepths.at(vxIdx) < measuredDepth ) { if ( vxIdx > 0 && horizontalLengthAlongWellToStartClipPoint) { cvf::Vec3d segment = m_wellPathPoints[vxIdx] - m_wellPathPoints[vxIdx-1]; segment[2] = 0.0; *horizontalLengthAlongWellToStartClipPoint += segment.length(); } vxIdx++; } if ( m_measuredDepths.size() > vxIdx ) { if ( vxIdx == 0 ) { //For measuredDepth same or lower than first point, use this first point interpolatedVector = vectorValuesAlongWellPath.at(0); } else { //Do interpolation double segmentFraction = (measuredDepth - m_measuredDepths.at(vxIdx-1)) / (m_measuredDepths.at(vxIdx) - m_measuredDepths.at(vxIdx - 1)); cvf::Vec3d segment = m_wellPathPoints[vxIdx] - m_wellPathPoints[vxIdx - 1]; interpolatedVector = (1.0 - segmentFraction) * vectorValuesAlongWellPath[vxIdx - 1] + segmentFraction * vectorValuesAlongWellPath[vxIdx]; if ( horizontalLengthAlongWellToStartClipPoint ) { segment[2] = 0.0; *horizontalLengthAlongWellToStartClipPoint += segment.length() * segmentFraction; } } } else { // Use endpoint if measuredDepth same or higher than last point interpolatedVector = vectorValuesAlongWellPath.at(vxIdx-1); } return interpolatedVector; } cvf::Vec3d RigWellPath::interpolatedPointAlongWellPath(double measuredDepth, double * horizontalLengthAlongWellToStartClipPoint /*= nullptr*/) const { return interpolatedVectorValuesAlongWellPath(m_wellPathPoints, measuredDepth, horizontalLengthAlongWellToStartClipPoint); } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- double RigWellPath::wellPathAzimuthAngle(const cvf::Vec3d& position) const { size_t closestIndex = cvf::UNDEFINED_SIZE_T; double closestDistance = cvf::UNDEFINED_DOUBLE; for ( size_t i = 1; i < m_wellPathPoints.size(); i++ ) { cvf::Vec3d p1 = m_wellPathPoints[i - 1]; cvf::Vec3d p2 = m_wellPathPoints[i - 0]; double candidateDistance = cvf::GeometryTools::linePointSquareDist(p1, p2, position); if ( candidateDistance < closestDistance ) { closestDistance = candidateDistance; closestIndex = i; } } //For vertical well (x-component of direction = 0) returned angle will be 90. double azimuthAngleDegrees = 90.0; if ( closestIndex != cvf::UNDEFINED_DOUBLE ) { cvf::Vec3d p1; cvf::Vec3d p2; if ( closestIndex > 0 ) { p1 = m_wellPathPoints[closestIndex - 1]; p2 = m_wellPathPoints[closestIndex - 0]; } else { p1 = m_wellPathPoints[closestIndex + 1]; p2 = m_wellPathPoints[closestIndex + 0]; } cvf::Vec3d direction = p2 - p1; if ( fabs(direction.y()) > 1e-5 ) { double atanValue = direction.x() / direction.y(); double azimuthRadians = atan(atanValue); azimuthAngleDegrees = cvf::Math::toDegrees(azimuthRadians); } } return azimuthAngleDegrees; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- void RigWellPath::twoClosestPoints(const cvf::Vec3d& position, cvf::Vec3d* p1, cvf::Vec3d* p2) const { CVF_ASSERT(p1 && p2); size_t closestIndex = cvf::UNDEFINED_SIZE_T; double closestDistance = cvf::UNDEFINED_DOUBLE; for ( size_t i = 1; i < m_wellPathPoints.size(); i++ ) { cvf::Vec3d point1 = m_wellPathPoints[i - 1]; cvf::Vec3d point2 = m_wellPathPoints[i - 0]; double candidateDistance = cvf::GeometryTools::linePointSquareDist(point1, point2, position); if ( candidateDistance < closestDistance ) { closestDistance = candidateDistance; closestIndex = i; } } if (closestIndex != cvf::UNDEFINED_SIZE_T) { if ( closestIndex > 0 ) { *p1 = m_wellPathPoints[closestIndex - 1]; *p2 = m_wellPathPoints[closestIndex - 0]; } else { *p1 = m_wellPathPoints[closestIndex + 1]; *p2 = m_wellPathPoints[closestIndex + 0]; } } } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::pair, std::vector > RigWellPath::clippedPointSubset(double startMD, double endMD, double * horizontalLengthAlongWellToStartClipPoint) const { std::pair, std::vector > pointsAndMDs; if ( m_measuredDepths.empty() ) return pointsAndMDs; if ( startMD > endMD ) return pointsAndMDs; pointsAndMDs.first.push_back(interpolatedPointAlongWellPath(startMD, horizontalLengthAlongWellToStartClipPoint)); pointsAndMDs.second.push_back(startMD); for ( size_t i = 0; i < m_measuredDepths.size(); ++i ) { double measuredDepth = m_measuredDepths[i]; if ( measuredDepth > startMD && measuredDepth < endMD ) { pointsAndMDs.first.push_back(m_wellPathPoints[i]); pointsAndMDs.second.push_back(measuredDepth); } } pointsAndMDs.first.push_back(interpolatedPointAlongWellPath(endMD)); pointsAndMDs.second.push_back(endMD); return pointsAndMDs; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RigWellPath::wellPathPointsIncludingInterpolatedIntersectionPoint(double intersectionMeasuredDepth) const { std::vector points; if ( m_measuredDepths.empty() ) return points; cvf::Vec3d interpolatedWellPathPoint = interpolatedPointAlongWellPath(intersectionMeasuredDepth); for ( size_t i = 0; i < m_measuredDepths.size() - 1; i++ ) { if ( m_measuredDepths[i] == intersectionMeasuredDepth ) { points.push_back(m_wellPathPoints[i]); } else if ( m_measuredDepths[i] < intersectionMeasuredDepth ) { points.push_back(m_wellPathPoints[i]); if ( m_measuredDepths[i + 1] > intersectionMeasuredDepth ) { points.push_back(interpolatedWellPathPoint); } } else if ( m_measuredDepths[i] > intersectionMeasuredDepth ) { if ( i == 0 ) { points.push_back(interpolatedWellPathPoint); } else { points.push_back(m_wellPathPoints[i]); } } } points.push_back(m_wellPathPoints.back()); return points; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- bool RigWellPath::isAnyPointInsideBoundingBox(const std::vector& points, const cvf::BoundingBox& boundingBox) { for (const cvf::Vec3d& point : points) { if (boundingBox.contains(point)) return true; } return false; } //-------------------------------------------------------------------------------------------------- /// //-------------------------------------------------------------------------------------------------- std::vector RigWellPath::clipPolylineStartAboveZ(const std::vector& polyLine, double maxZ, double * horizontalLengthAlongWellToClipPoint, size_t * indexToFirstVisibleSegment) { CVF_ASSERT(horizontalLengthAlongWellToClipPoint); CVF_ASSERT(indexToFirstVisibleSegment); // Find first visible point, and accumulate distance along wellpath *horizontalLengthAlongWellToClipPoint = 0.0; *indexToFirstVisibleSegment = cvf::UNDEFINED_SIZE_T; size_t firstVisiblePointIndex = cvf::UNDEFINED_SIZE_T; for ( size_t vxIdx = 0 ; vxIdx < polyLine.size(); ++vxIdx ) { if ( polyLine[vxIdx].z() > maxZ ) { if ( vxIdx > 0 ) { cvf::Vec3d segment = polyLine[vxIdx] - polyLine[vxIdx-1]; segment[2] = 0.0; *horizontalLengthAlongWellToClipPoint += segment.length(); } } else { firstVisiblePointIndex = vxIdx; break; } } // Clip line, and add vx to the start of the clipped result std::vector clippedPolyLine; if ( firstVisiblePointIndex == cvf::UNDEFINED_SIZE_T ) { return clippedPolyLine; } if ( firstVisiblePointIndex > 0 ) { cvf::Plane topPlane; topPlane.setFromPointAndNormal({ 0.0, 0.0, maxZ }, cvf::Vec3d::Z_AXIS); cvf::Vec3d intersection; if ( topPlane.intersect(polyLine[firstVisiblePointIndex-1], polyLine[firstVisiblePointIndex], &intersection) ) { cvf::Vec3d segment = intersection - polyLine[firstVisiblePointIndex-1]; segment[2] = 0.0; *horizontalLengthAlongWellToClipPoint += segment.length(); clippedPolyLine.push_back(intersection); } *indexToFirstVisibleSegment = firstVisiblePointIndex - 1; } else { *indexToFirstVisibleSegment = 0; } // Add the rest of the polyline for ( size_t vxIdx = firstVisiblePointIndex; vxIdx < polyLine.size(); ++vxIdx ) { clippedPolyLine.push_back(polyLine[vxIdx]); } return clippedPolyLine; } const std::vector& RigWellPath::wellPathPoints() const { return m_wellPathPoints; } const std::vector& RigWellPath::measureDepths() const { return m_measuredDepths; }