ResInsight/ThirdParty/custom-opm-flowdiag-app/opm-flowdiagnostics-applications/tests/runLinearisedCellDataTest.cpp
2018-05-07 14:37:32 +02:00

582 lines
15 KiB
C++

/*
Copyright 2017 SINTEF ICT, Applied Mathematics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <examples/exampleSetup.hpp>
#include <opm/utility/ECLCaseUtilities.hpp>
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <exception>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <memory>
#include <numeric>
#include <sstream>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include <boost/algorithm/string/case_conv.hpp>
#include <boost/filesystem.hpp>
#include <boost/filesystem/fstream.hpp>
#include <regex>
#include <ert/ecl/ecl_file.h>
#include <ert/ecl/ecl_file_kw.h>
#include <ert/ecl/ecl_file_view.h>
#include <ert/ecl/ecl_kw.h>
#include <ert/ecl/ecl_kw_magic.h>
#include <ert/util/ert_unique_ptr.hpp>
namespace StringUtils {
namespace {
std::string trim(const std::string& s)
{
const auto anchor_ws =
std::regex(R"~~(^\s+([^\s]+)\s+$)~~");
auto m = std::smatch{};
if (std::regex_match(s, m, anchor_ws)) {
return m[1];
}
return s;
}
std::vector<std::string> split(const std::string& s)
{
if (s.empty()) {
// Single element vector whose only element is the empty
// string.
return { "" };
}
const auto sep = std::regex(R"~~([\s,;.|]+)~~");
using TI = std::sregex_token_iterator;
// vector<string>(begin, end)
//
// Range is every substring (i.e., token) in input string 's'
// that does NOT match 'sep'.
return{ TI(s.begin(), s.end(), sep, -1), TI{} };
}
} // namespace Anonymous
template <typename T>
struct StringTo;
template <>
struct StringTo<int>
{
static int value(const std::string& s);
};
template <>
struct StringTo<double>
{
static double value(const std::string& s);
};
template <>
struct StringTo<std::string>
{
static std::string value(const std::string& s);
};
int StringTo<int>::value(const std::string& s)
{
return std::stoi(s);
}
double StringTo<double>::value(const std::string& s)
{
return std::stod(s);
}
std::string StringTo<std::string>::value(const std::string& s)
{
return trim(s);
}
namespace VectorValue {
template <typename T>
std::vector<T> get(const std::string& s, std::true_type)
{
return split(s);
}
template <typename T>
std::vector<T> get(const std::string& s, std::false_type)
{
const auto tokens = split(s);
auto ret = std::vector<T>{};
ret.reserve(tokens.size());
for (const auto& token : tokens) {
ret.push_back(StringTo<T>::value(token));
}
return ret;
}
template <typename T>
std::vector<T> get(const std::string& s)
{
return get<T>(s, typename std::is_same<T, std::string>::type());
}
} // namespace VectorValue
} // namespace StringUtils
namespace {
struct Reference
{
std::vector<double> data;
};
struct Calculated
{
std::vector<double> data;
};
class VectorUnits
{
private:
using USys = ::Opm::ECLUnits::UnitSystem;
public:
using UnitConvention = ::Opm::ECLGraph::UnitConvention;
VectorUnits()
: units_({ { "pressure", &USys::pressure } })
{
}
UnitConvention getUnit(const std::string& vector) const
{
auto p = units_.find(vector);
if (p == units_.end()) {
std::ostringstream os;
os << "Unsupported Vector Quantity '" << vector << '\'';
throw std::domain_error(os.str());
}
return p->second;
}
private:
std::map<std::string, UnitConvention> units_;
};
class VectorDifference
{
public:
using Vector = std::vector<double>;
using size_type = Vector::size_type;
VectorDifference(const Vector& x, const Vector& y)
: x_(x), y_(y)
{
if (x_.size() != y_.size()) {
std::ostringstream os;
os << "Incompatible Array Sizes: Expected 2x"
<< x_.size() << ", but got ("
<< x_.size() << ", " << y_.size() << ')';
throw std::domain_error(os.str());
}
}
size_type size() const
{
return x_.size();
}
bool empty() const
{
return this->size() == 0;
}
double operator[](const size_type i) const
{
return x_[i] - y_[i];
}
private:
const Vector& x_;
const Vector& y_;
};
template <class Vector1, class Vector2>
class VectorRatio
{
public:
using size_type = typename std::decay<
decltype(std::declval<Vector1>()[0])
>::type;
VectorRatio(const Vector1& x, const Vector2& y)
: x_(x), y_(y)
{
if (x_.size() != y.size()) {
std::ostringstream os;
os << "Incompatible Array Sizes: Expected 2x"
<< x_.size() << ", but got ("
<< x_.size() << ", " << y_.size() << ')';
throw std::domain_error(os.str());
}
}
size_type size() const
{
return x_.size();
}
bool empty() const
{
return x_.empty();
}
double operator[](const size_type i) const
{
return x_[i] / y_[i];
}
private:
const Vector1& x_;
const Vector2& y_;
};
struct ErrorMeasurement
{
double volume;
double inf;
};
struct ErrorTolerance
{
double absolute;
double relative;
};
struct AggregateErrors
{
std::vector<ErrorMeasurement> absolute;
std::vector<ErrorMeasurement> relative;
};
struct ReferenceSolution
{
std::vector<double> raw;
std::vector<double> SI;
};
template <class FieldVariable>
double volumeMetric(const FieldVariable& x)
{
auto result = 0.0;
for (decltype(x.size())
i = 0, n = x.size(); i < n; ++i)
{
const auto m = std::abs(x[i]);
result += m * m;
}
return std::sqrt(result / x.size());
}
template <class FieldVariable>
double pointMetric(const FieldVariable& x)
{
static_assert(std::is_same<typename std::decay<decltype(std::abs(x[0]))>::type, double>::value,
"Field Variable Value Type Must be 'double'");
if (x.empty()) {
return 0;
}
auto max = 0*x[0] - 1;
for (decltype(x.size())
i = 0, n = x.size(); i < n; ++i)
{
const auto t = std::abs(x[i]);
if (t > max) {
max = t;
}
}
return max;
}
ErrorTolerance
testTolerances(const ::Opm::ParameterGroup& param)
{
const auto atol = param.getDefault("atol", 1.0e-8);
const auto rtol = param.getDefault("rtol", 5.0e-12);
return ErrorTolerance{ atol, rtol };
}
std::vector<std::string>
testQuantities(const ::Opm::ParameterGroup& param)
{
return StringUtils::VectorValue::
get<std::string>(param.get<std::string>("quant"));
}
int numDigits(const std::vector<int>& steps)
{
if (steps.empty()) {
return 1;
}
const auto m =
*std::max_element(std::begin(steps), std::end(steps));
if (m == 0) {
return 1;
}
assert (m > 0);
return std::floor(std::log10(static_cast<double>(m))) + 1;
}
ReferenceSolution
loadReference(const ::Opm::ParameterGroup& param,
const std::string& quant,
const int step,
const int nDigits)
{
namespace fs = boost::filesystem;
using VRef = std::reference_wrapper<std::vector<double>>;
auto x = ReferenceSolution{};
auto ref = std::array<VRef,2>{{ std::ref(x.raw) ,
std::ref(x.SI ) }};
auto i = 0;
for (const auto* q : { "raw", "SI" }) {
auto fname = fs::path(param.get<std::string>("ref-dir"))
/ boost::algorithm::to_lower_copy(quant);
{
std::ostringstream os;
os << q << '-'
<< std::setw(nDigits) << std::setfill('0')
<< step << ".txt";
fname /= os.str();
}
fs::ifstream input(fname);
if (input) {
ref[i].get().assign(std::istream_iterator<double>(input),
std::istream_iterator<double>());
}
i += 1;
}
if (x.raw.size() != x.SI.size()) {
std::ostringstream os;
os << "Unable to Read Consistent Reference Data From '"
<< param.get<std::string>("ref-dir") << "' In Step "
<< step;
throw std::out_of_range(os.str());
}
return x;
}
void computeErrors(const Reference& ref,
const Calculated& calc,
AggregateErrors& E)
{
const auto diff =
VectorDifference(calc.data, ref.data); // calc - ref
using Vector1 = std::decay<decltype(diff)>::type;
using Vector2 = std::decay<decltype(ref.data)>::type;
using Ratio = VectorRatio<Vector1, Vector2>;
const auto rat = Ratio(diff, ref.data); // (tof - ref) / ref
auto abs = ErrorMeasurement{};
{
abs.volume = volumeMetric(diff);
abs.inf = pointMetric (diff);
}
auto rel = ErrorMeasurement{};
{
rel.volume = volumeMetric(rat);
rel.inf = pointMetric (rat);
}
E.absolute.push_back(std::move(abs));
E.relative.push_back(std::move(rel));
}
std::unique_ptr<Opm::ECLRestartData>
openRestartSet(const Opm::ECLCaseUtilities::ResultSet& rset,
const int step)
{
return std::unique_ptr<Opm::ECLRestartData> {
new Opm::ECLRestartData(rset.restartFile(step))
};
}
std::array<AggregateErrors, 2>
sampleDifferences(const ::Opm::ECLGraph& graph,
const ::Opm::ECLCaseUtilities::ResultSet& rset,
const ::Opm::ParameterGroup& param,
const std::string& quant,
const std::vector<int>& steps)
{
const auto ECLquant = boost::algorithm::to_upper_copy(quant);
auto unit = VectorUnits()
.getUnit(boost::algorithm::to_lower_copy(quant));
const auto start =
std::vector<Opm::FlowDiagnostics::CellSet>{};
const auto nDigits = numDigits(steps);
auto rstrt = std::unique_ptr<Opm::ECLRestartData>{};
auto E = std::array<AggregateErrors, 2>{};
for (const auto& step : steps) {
if (! (rset.isUnifiedRestart() && bool(rstrt))) {
// Separate (not unified) restart file or this is the first
// time we're selecting a report step.
rstrt = openRestartSet(rset, step);
}
if (! rstrt->selectReportStep(step)) {
continue;
}
const auto ref = loadReference(param, quant, step, nDigits);
{
const auto raw = Calculated {
graph.rawLinearisedCellData<double>(*rstrt, ECLquant)
};
computeErrors(Reference{ ref.raw }, raw, E[0]);
}
{
const auto SI = Calculated {
graph.linearisedCellData(*rstrt, ECLquant, unit)
};
computeErrors(Reference{ ref.SI }, SI, E[1]);
}
}
return E;
}
bool errorAcceptable(const std::vector<ErrorMeasurement>& E,
const double tol)
{
return std::accumulate(std::begin(E), std::end(E), true,
[tol](const bool ok, const ErrorMeasurement& e)
{
// Fine if at least one of .volume or .inf <= tol.
return ok && ! ((e.volume > tol) && (e.inf > tol));
});
}
bool everythingFine(const AggregateErrors& E,
const ErrorTolerance& tol)
{
return errorAcceptable(E.absolute, tol.absolute)
&& errorAcceptable(E.relative, tol.relative);
}
::Opm::ECLGraph
constructGraph(const Opm::ECLCaseUtilities::ResultSet& rset)
{
const auto I = ::Opm::ECLInitFileData(rset.initFile());
return ::Opm::ECLGraph::load(rset.gridFile(), I);
}
} // namespace Anonymous
int main(int argc, char* argv[])
try {
const auto prm = example::initParam(argc, argv);
const auto rset = example::identifyResultSet(prm);
const auto tol = testTolerances(prm);
const auto steps = rset.reportStepIDs();
const auto graph = constructGraph(rset);
auto all_ok = true;
for (const auto& quant : testQuantities(prm)) {
const auto E =
sampleDifferences(graph, rset, prm, quant, steps);
const auto ok =
everythingFine(E[0], tol) && everythingFine(E[1], tol);
std::cout << quant << ": " << (ok ? "OK" : "FAIL") << '\n';
all_ok = all_ok && ok;
}
if (! all_ok) {
return EXIT_FAILURE;
}
}
catch (const std::exception& e) {
std::cerr << "Caught Exception: " << e.what() << '\n';
return EXIT_FAILURE;
}