ResInsight/ApplicationLibCode/FileInterface/RifThermalFractureReader.cpp
Magne Sjaastad 952e766c2f
Update clang-format.yml (#10068)
* Update to clang-format-15
Removed two custom .clang-format files in subfolders of AppFwk

* Fixes by clang-format
2023-04-13 07:05:53 +02:00

284 lines
11 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2022 - Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RifThermalFractureReader.h"
#include "RiaDefines.h"
#include "RiaFractureDefines.h"
#include "RiaTextStringTools.h"
#include "RiaThermalFractureDefines.h"
#include "RigThermalFractureDefinition.h"
#include "RifFileParseTools.h"
#include "cafAssert.h"
#include <QDateTime>
#include <QFile>
#include <QRegularExpression>
#include <QTextStream>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<std::shared_ptr<RigThermalFractureDefinition>, QString> RifThermalFractureReader::readFractureCsvFile( const QString& filePath )
{
QFile file( filePath );
if ( !file.open( QIODevice::ReadOnly | QIODevice::Text ) )
{
return std::make_pair( nullptr, QString( "Unable to open file: %1" ).arg( filePath ) );
}
std::shared_ptr<RigThermalFractureDefinition> definition = std::make_shared<RigThermalFractureDefinition>();
QString separator = ",";
auto appendPropertyValues = [definition]( int nodeIndex, int valueOffset, const QStringList& values, double conductivityFactor )
{
CAF_ASSERT( valueOffset <= values.size() );
for ( int i = valueOffset; i < values.size(); i++ )
{
bool isOk = false;
double value = values[i].toDouble( &isOk );
if ( isOk )
{
int propertyIndex = i - valueOffset;
// Convert conductivity from Darcy to milliDarcy
if ( definition->getPropertyIndex( "Conductivity" ) == propertyIndex )
{
value *= conductivityFactor;
}
definition->appendPropertyValue( propertyIndex, nodeIndex, value );
}
}
};
QTextStream in( &file );
int lineNumber = 1;
// The two items in the csv is name and timestep
const int valueOffset = 2;
int nodeIndex = 0;
bool isFirstHeader = true;
bool isValidNode = false;
double conductivityFactor = 1.0;
while ( !in.atEnd() )
{
QString line = in.readLine();
if ( lineNumber == 1 )
{
// The first line is the name of the fracture
definition->setName( line );
}
else if ( isHeaderLine( line ) )
{
QStringList headerValues = RifFileParseTools::splitLineAndTrim( line, separator );
if ( isFirstHeader )
{
// Create the result vector when encountering the first header
for ( int i = valueOffset; i < headerValues.size(); i++ )
{
auto [name, unit] = parseNameAndUnit( headerValues[i] );
if ( !name.isEmpty() && !unit.isEmpty() )
{
// Special handling for Conductivity: change unit from Darcy to Milli
if ( name.contains( RiaDefines::conductivityResultName(), Qt::CaseInsensitive ) )
{
// Check if the conductivity unit needs conversion to milliDarcy
if ( !unit.contains( "mD" ) )
{
conductivityFactor = 1.0e3;
}
// Use the preferred internal unit for conductivity
unit = RiaDefines::unitStringConductivity( detectUnitSystem( definition ) );
}
definition->addProperty( name, unit );
}
}
// Detect unit system
RiaDefines::EclipseUnitSystem unitSystem = detectUnitSystem( definition );
if ( unitSystem == RiaDefines::EclipseUnitSystem::UNITS_UNKNOWN )
{
return std::make_pair( nullptr, QString( "Unknown unit system found in file: %1" ).arg( filePath ) );
}
// Verify that all values have consistent units:
// all values should be either metric or field, and mixing is not allowed
bool isUnitsConsistent = checkUnits( definition, unitSystem );
if ( !isUnitsConsistent )
{
return std::make_pair( nullptr, QString( "Inconsistent units found in file: %1" ).arg( filePath ) );
}
definition->setUnitSystem( unitSystem );
isFirstHeader = false;
}
else if ( isValidNode )
{
nodeIndex++;
}
}
else if ( isCenterNodeLine( line ) )
{
// The first node is the center node
auto values = RifFileParseTools::splitLineAndTrim( line, separator );
// Second is the timestamp
QDateTime dateTime = parseDateTime( values[1] );
definition->addTimeStep( dateTime.toSecsSinceEpoch() );
//
appendPropertyValues( nodeIndex, valueOffset, values, conductivityFactor );
isValidNode = true;
}
else if ( isInternalNodeLine( line ) || isPerimeterNodeLine( line ) )
{
auto values = RifFileParseTools::splitLineAndTrim( line, separator );
appendPropertyValues( nodeIndex, valueOffset, values, conductivityFactor );
isValidNode = true;
}
else
{
isValidNode = false;
}
lineNumber++;
}
return std::make_pair( definition, "" );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QDateTime RifThermalFractureReader::parseDateTime( const QString& dateString )
{
QString dateFormat = "dd.MM.yyyy hh:mm:ss";
QDateTime dateTime = QDateTime::fromString( dateString, dateFormat );
// Sometimes the datetime field is missing time
if ( !dateTime.isValid() )
{
QString dateFormat = "dd.MM.yyyy";
dateTime = QDateTime::fromString( dateString, dateFormat );
}
return dateTime;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RifThermalFractureReader::isHeaderLine( const QString& line )
{
return line.contains( "XCoord" );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RifThermalFractureReader::isCenterNodeLine( const QString& line )
{
return line.contains( "Centre Node" );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RifThermalFractureReader::isInternalNodeLine( const QString& line )
{
return line.contains( "Internal Node" );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RifThermalFractureReader::isPerimeterNodeLine( const QString& line )
{
std::vector<QString> validPerimeterNames = { "Perimeter Node", "Bottom Node", "Top Node", "Right Node", "Left Node" };
bool result =
std::any_of( validPerimeterNames.begin(), validPerimeterNames.end(), [line]( const QString& str ) { return line.contains( str ); } );
return result;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<QString, QString> RifThermalFractureReader::parseNameAndUnit( const QString& value )
{
// Expected values: "name(unit)" or "name (unit)"
QRegularExpression re( "(\\w*)\\s?\\(([^\\)]+)\\)" );
QRegularExpressionMatch match = re.match( value );
if ( match.hasMatch() )
{
QString name = match.captured( 1 );
QString unit = match.captured( 2 );
return std::make_pair( name, unit );
}
return std::make_pair( "", "" );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RiaDefines::EclipseUnitSystem RifThermalFractureReader::detectUnitSystem( std::shared_ptr<const RigThermalFractureDefinition> definition )
{
// Use XCoord property to determine expected unit for entire file
QString targetName = "XCoord";
auto namesAndUnits = definition->getPropertyNamesUnits();
auto res = std::find_if( namesAndUnits.begin(), namesAndUnits.end(), [&]( const auto& val ) { return val.first == targetName; } );
if ( res != namesAndUnits.end() )
{
QString unit = res->second;
if ( unit == RiaDefines::getExpectedThermalFractureUnit( targetName, RiaDefines::EclipseUnitSystem::UNITS_METRIC ) )
return RiaDefines::EclipseUnitSystem::UNITS_METRIC;
if ( unit == RiaDefines::getExpectedThermalFractureUnit( targetName, RiaDefines::EclipseUnitSystem::UNITS_FIELD ) )
return RiaDefines::EclipseUnitSystem::UNITS_FIELD;
}
return RiaDefines::EclipseUnitSystem::UNITS_UNKNOWN;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RifThermalFractureReader::checkUnits( std::shared_ptr<const RigThermalFractureDefinition> definition,
RiaDefines::EclipseUnitSystem unitSystem )
{
auto namesAndUnits = definition->getPropertyNamesUnits();
for ( auto [name, unit] : namesAndUnits )
{
auto expectedUnit = RiaDefines::getExpectedThermalFractureUnit( name, unitSystem );
if ( expectedUnit != unit ) return false;
}
return true;
}