ResInsight/ApplicationLibCode/ModelVisualization/RivTensorResultPartMgr.cpp
Magne Sjaastad 21843820e6
Update clang-tidy.yml
* Make sure clang-tidy action use .clang-tidy config file
Use add-paths to instruct create-pull-request to a sub folder to avoid diff from Qt and vcpkg

* Use empty() in macro to avoid clang-tidy warning
* Add NOLINT to CAF_ASSERT
* Add NOLINT to cvfAssert
2023-10-03 09:04:08 +02:00

593 lines
25 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2018- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RivTensorResultPartMgr.h"
#include "RiaColorTables.h"
#include "RimGeoMechCase.h"
#include "RimGeoMechView.h"
#include "RimRegularLegendConfig.h"
#include "RimTensorResults.h"
#include "RigFemPartCollection.h"
#include "RigFemPartGrid.h"
#include "RigFemPartResultsCollection.h"
#include "RigFemResultAddress.h"
#include "RigFemTypes.h"
#include "RigGeoMechCaseData.h"
#include "RivFemPartGeometryGenerator.h"
#include "RivGeoMechPartMgr.h"
#include "RivGeoMechPartMgrCache.h"
#include "RivGeoMechVizLogic.h"
#include "cafDisplayCoordTransform.h"
#include "cafEffectGenerator.h"
#include "cafTensor3.h"
#include "cvfDrawableGeo.h"
#include "cvfModelBasicList.h"
#include "cvfOpenGLResourceManager.h"
#include "cvfPart.h"
#include "cvfPrimitiveSetIndexedUInt.h"
#include "cvfScalarMapperDiscreteLinear.h"
#include "cvfShaderProgram.h"
#include "cvfStructGridGeometryGenerator.h"
#include <cmath>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivTensorResultPartMgr::RivTensorResultPartMgr( RimGeoMechView* reservoirView )
{
m_rimReservoirView = reservoirView;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivTensorResultPartMgr::~RivTensorResultPartMgr()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivTensorResultPartMgr::appendDynamicGeometryPartsToModel( cvf::ModelBasicList* model,
int viewerStepIndex,
int localTimeStepIndex,
int frameIndex ) const
{
CVF_ASSERT( model );
if ( m_rimReservoirView.isNull() ) return;
if ( !m_rimReservoirView->geoMechCase() ) return;
if ( !m_rimReservoirView->geoMechCase()->geoMechData() ) return;
if ( !m_rimReservoirView->tensorResults()->showTensors() ) return;
RigFemPartCollection* femParts = m_rimReservoirView->femParts();
if ( !femParts ) return;
std::vector<TensorVisualization> tensorVisualizations;
RigFemResultAddress address = m_rimReservoirView->tensorResults()->selectedTensorResult();
if ( !isTensorAddress( address ) ) return;
RigFemPartResultsCollection* resultCollection = m_rimReservoirView->geoMechCase()->geoMechData()->femPartResults();
if ( !resultCollection ) return;
for ( int partIdx = 0; partIdx < femParts->partCount(); partIdx++ )
{
std::vector<caf::Ten3f> vertexTensors = resultCollection->tensors( address, partIdx, localTimeStepIndex, frameIndex );
if ( vertexTensors.empty() ) continue;
const RigFemPart* part = femParts->part( partIdx );
std::vector<caf::Ten3f> elmTensors;
calculateElementTensors( *part, vertexTensors, &elmTensors );
std::array<std::vector<float>, 3> elmPrincipals;
std::vector<std::array<cvf::Vec3f, 3>> elmPrincipalDirections;
calculatePrincipalsAndDirections( elmTensors, &elmPrincipals, &elmPrincipalDirections );
std::vector<RivGeoMechPartMgrCache::Key> partKeys = m_rimReservoirView->vizLogic()->keysToVisiblePartMgrs( viewerStepIndex );
RigFemPartNodes nodes = part->nodes();
float arrowConstantScaling = 0.5 * m_rimReservoirView->tensorResults()->sizeScale() * part->characteristicElementSize();
double min, max;
m_rimReservoirView->tensorResults()->mappingRange( &min, &max );
double maxAbsResult = 1.0;
if ( min != cvf::UNDEFINED_DOUBLE && max != cvf::UNDEFINED_DOUBLE )
{
maxAbsResult = std::max( cvf::Math::abs( max ), cvf::Math::abs( min ) );
}
float arrowResultScaling = arrowConstantScaling / maxAbsResult;
cvf::ref<RivGeoMechPartMgrCache> partMgrCache = m_rimReservoirView->vizLogic()->partMgrCache();
for ( const RivGeoMechPartMgrCache::Key& partKey : partKeys )
{
const RivGeoMechPartMgr* partMgr = partMgrCache->partMgr( partKey );
auto mgr = partMgr->femPartMgrs()[partIdx];
{
const RivFemPartGeometryGenerator* surfaceGenerator = mgr->surfaceGenerator();
const std::vector<size_t>& quadVerticesToNodeIdxMapping = surfaceGenerator->quadVerticesToNodeIdxMapping();
const std::vector<size_t>& quadVerticesToElmIdx = surfaceGenerator->quadVerticesToGlobalElmIdx();
for ( int quadVertex = 0; quadVertex < static_cast<int>( quadVerticesToNodeIdxMapping.size() ); quadVertex += 4 )
{
cvf::Vec3f center = nodes.coordinates.at( quadVerticesToNodeIdxMapping[quadVertex] ) +
nodes.coordinates.at( quadVerticesToNodeIdxMapping[quadVertex + 2] );
cvf::Vec3d displayCoord = m_rimReservoirView->displayCoordTransform()->transformToDisplayCoord( cvf::Vec3d( center / 2 ) );
cvf::Vec3f faceNormal = calculateFaceNormal( nodes, quadVerticesToNodeIdxMapping, quadVertex );
size_t elmIdx = quadVerticesToElmIdx[quadVertex];
cvf::Vec3f result1, result2, result3;
if ( m_rimReservoirView->tensorResults()->scaleMethod() == RimTensorResults::RESULT )
{
result1.set( elmPrincipalDirections[elmIdx][0] * arrowResultScaling * elmPrincipals[0][elmIdx] );
result2.set( elmPrincipalDirections[elmIdx][1] * arrowResultScaling * elmPrincipals[1][elmIdx] );
result3.set( elmPrincipalDirections[elmIdx][2] * arrowResultScaling * elmPrincipals[2][elmIdx] );
}
else
{
result1.set( elmPrincipalDirections[elmIdx][0] * arrowConstantScaling );
result2.set( elmPrincipalDirections[elmIdx][1] * arrowConstantScaling );
result3.set( elmPrincipalDirections[elmIdx][2] * arrowConstantScaling );
}
if ( isDrawable( result1, m_rimReservoirView->tensorResults()->showPrincipal1() ) )
{
tensorVisualizations.push_back( TensorVisualization( cvf::Vec3f( displayCoord ),
result1,
faceNormal,
isPressure( elmPrincipals[0][elmIdx] ),
1,
elmPrincipals[0][elmIdx] ) );
tensorVisualizations.push_back( TensorVisualization( cvf::Vec3f( displayCoord ),
-result1,
faceNormal,
isPressure( elmPrincipals[0][elmIdx] ),
1,
elmPrincipals[0][elmIdx] ) );
}
if ( isDrawable( result2, m_rimReservoirView->tensorResults()->showPrincipal2() ) )
{
tensorVisualizations.push_back( TensorVisualization( cvf::Vec3f( displayCoord ),
result2,
faceNormal,
isPressure( elmPrincipals[1][elmIdx] ),
2,
elmPrincipals[1][elmIdx] ) );
tensorVisualizations.push_back( TensorVisualization( cvf::Vec3f( displayCoord ),
-result2,
faceNormal,
isPressure( elmPrincipals[1][elmIdx] ),
2,
elmPrincipals[1][elmIdx] ) );
}
if ( isDrawable( result3, m_rimReservoirView->tensorResults()->showPrincipal3() ) )
{
tensorVisualizations.push_back( TensorVisualization( cvf::Vec3f( displayCoord ),
result3,
faceNormal,
isPressure( elmPrincipals[2][elmIdx] ),
3,
elmPrincipals[2][elmIdx] ) );
tensorVisualizations.push_back( TensorVisualization( cvf::Vec3f( displayCoord ),
-result3,
faceNormal,
isPressure( elmPrincipals[2][elmIdx] ),
3,
elmPrincipals[2][elmIdx] ) );
}
}
}
}
}
if ( !tensorVisualizations.empty() )
{
cvf::ref<cvf::Part> partIdx = createPart( tensorVisualizations );
model->addPart( partIdx.p() );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivTensorResultPartMgr::calculateElementTensors( const RigFemPart& part,
const std::vector<caf::Ten3f>& vertexTensors,
std::vector<caf::Ten3f>* elmTensors )
{
CVF_ASSERT( elmTensors );
size_t elmCount = part.elementCount();
elmTensors->resize( elmCount );
for ( int elmIdx = 0; elmIdx < static_cast<int>( elmCount ); elmIdx++ )
{
if ( RigFemTypes::elementNodeCount( part.elementType( elmIdx ) ) == 8 )
{
caf::Ten3f tensorSumOfElmNodes = vertexTensors[part.elementNodeResultIdx( elmIdx, 0 )];
for ( int i = 1; i < 8; i++ )
{
tensorSumOfElmNodes = tensorSumOfElmNodes + vertexTensors[part.elementNodeResultIdx( elmIdx, i )];
}
( *elmTensors )[elmIdx] = tensorSumOfElmNodes * ( 1.0 / 8.0 );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivTensorResultPartMgr::calculatePrincipalsAndDirections( const std::vector<caf::Ten3f>& tensors,
std::array<std::vector<float>, 3>* principals,
std::vector<std::array<cvf::Vec3f, 3>>* principalDirections )
{
CVF_ASSERT( principals );
CVF_ASSERT( principalDirections );
size_t elmCount = tensors.size();
( *principals )[0].resize( elmCount );
( *principals )[1].resize( elmCount );
( *principals )[2].resize( elmCount );
( *principalDirections ).resize( elmCount );
for ( size_t nIdx = 0; nIdx < elmCount; ++nIdx )
{
cvf::Vec3f principalDirs[3];
cvf::Vec3f principalValues = tensors[nIdx].calculatePrincipals( principalDirs );
( *principals )[0][nIdx] = principalValues[0];
( *principals )[1][nIdx] = principalValues[1];
( *principals )[2][nIdx] = principalValues[2];
( *principalDirections )[nIdx][0] = principalDirs[0];
( *principalDirections )[nIdx][1] = principalDirs[1];
( *principalDirections )[nIdx][2] = principalDirs[2];
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3f RivTensorResultPartMgr::calculateFaceNormal( const RigFemPartNodes& nodes,
const std::vector<size_t>& quadVerticesToNodeIdxMapping,
int quadVertex )
{
cvf::Vec3f diag1 = nodes.coordinates.at( quadVerticesToNodeIdxMapping[quadVertex] ) -
nodes.coordinates.at( quadVerticesToNodeIdxMapping[quadVertex + 2] );
cvf::Vec3f diag2 = nodes.coordinates.at( quadVerticesToNodeIdxMapping[quadVertex + 1] ) -
nodes.coordinates.at( quadVerticesToNodeIdxMapping[quadVertex + 3] );
return ( diag1 ^ diag2 ).getNormalized();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivTensorResultPartMgr::createPart( const std::vector<TensorVisualization>& tensorVisualizations ) const
{
std::vector<uint> indices;
indices.reserve( tensorVisualizations.size() * 5 );
std::vector<cvf::Vec3f> vertices;
vertices.reserve( tensorVisualizations.size() * 5 );
uint counter = 0;
for ( TensorVisualization tensor : tensorVisualizations )
{
for ( const cvf::Vec3f& vertex : createArrowVertices( tensor ) )
{
vertices.push_back( vertex );
}
for ( const uint& index : createArrowIndices( counter ) )
{
indices.push_back( index );
}
counter += 5;
}
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUInt = new cvf::PrimitiveSetIndexedUInt( cvf::PrimitiveType::PT_LINES );
cvf::ref<cvf::UIntArray> indexArray = new cvf::UIntArray( indices );
cvf::ref<cvf::DrawableGeo> drawable = new cvf::DrawableGeo();
indexedUInt->setIndices( indexArray.p() );
drawable->addPrimitiveSet( indexedUInt.p() );
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray( vertices );
drawable->setVertexArray( vertexArray.p() );
cvf::ref<cvf::Vec2fArray> lineTexCoords = const_cast<cvf::Vec2fArray*>( drawable->textureCoordArray() );
if ( lineTexCoords.isNull() )
{
lineTexCoords = new cvf::Vec2fArray;
}
cvf::ScalarMapper* activeScalerMapper = nullptr;
cvf::ref<cvf::ScalarMapperDiscreteLinear> discreteScalarMapper = new cvf::ScalarMapperDiscreteLinear;
auto vectorColors = m_rimReservoirView->tensorResults()->vectorColors();
if ( vectorColors == RimTensorResults::RESULT_COLORS )
{
activeScalerMapper = m_rimReservoirView->tensorResults()->arrowColorLegendConfig()->scalarMapper();
createResultColorTextureCoords( lineTexCoords.p(), tensorVisualizations, activeScalerMapper );
}
else
{
activeScalerMapper = discreteScalarMapper.p();
createOneColorPerPrincipalScalarMapper( vectorColors, discreteScalarMapper.p() );
createOneColorPerPrincipalTextureCoords( lineTexCoords.p(), tensorVisualizations, discreteScalarMapper.p() );
}
caf::ScalarMapperEffectGenerator surfEffGen( activeScalerMapper, caf::PO_1 );
if ( m_rimReservoirView && m_rimReservoirView->isLightingDisabled() )
{
surfEffGen.disableLighting( true );
}
caf::ScalarMapperMeshEffectGenerator meshEffGen( activeScalerMapper );
cvf::ref<cvf::Effect> scalarMapperMeshEffect = meshEffGen.generateUnCachedEffect();
drawable->setTextureCoordArray( lineTexCoords.p() );
cvf::ref<cvf::Part> part = new cvf::Part;
part->setName( "RivTensorResultPartMgr" );
part->setDrawable( drawable.p() );
part->setEffect( scalarMapperMeshEffect.p() );
return part;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivTensorResultPartMgr::createOneColorPerPrincipalScalarMapper( const RimTensorResults::TensorColors& colorSet,
cvf::ScalarMapperDiscreteLinear* scalarMapper )
{
CVF_ASSERT( scalarMapper );
cvf::Color3ubArray arrowColors;
arrowColors.resize( 3 );
if ( colorSet == RimTensorResults::WHITE_GRAY_BLACK )
{
arrowColors = RiaColorTables::tensorWhiteGrayBlackPaletteColors().color3ubArray();
}
else if ( colorSet == RimTensorResults::ORANGE_BLUE_WHITE )
{
arrowColors = RiaColorTables::tensorOrangeBlueWhitePaletteColors().color3ubArray();
}
else if ( colorSet == RimTensorResults::MAGENTA_BROWN_GRAY )
{
arrowColors = RiaColorTables::tensorsMagentaBrownGrayPaletteColors().color3ubArray();
}
scalarMapper->setColors( arrowColors );
// Using a linear color mapper to set colors for three discrete principal numbers (1, 2, 3)
// by setting the 3 + 1 interval levels so the principal numbers match the center of the intervals.
std::set<double> levelValues = { 0.5, 1.5, 2.5, 3.5 };
scalarMapper->setLevelsFromValues( levelValues );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivTensorResultPartMgr::createOneColorPerPrincipalTextureCoords( cvf::Vec2fArray* textureCoords,
const std::vector<TensorVisualization>& tensorVisualizations,
const cvf::ScalarMapper* mapper )
{
CVF_ASSERT( textureCoords );
CVF_ASSERT( mapper );
size_t vertexCount = tensorVisualizations.size() * 5;
if ( textureCoords->size() != vertexCount ) textureCoords->reserve( vertexCount );
for ( auto tensor : tensorVisualizations )
{
for ( size_t vxIdx = 0; vxIdx < 5; ++vxIdx )
{
cvf::Vec2f texCoord = mapper->mapToTextureCoord( tensor.principalNumber );
textureCoords->add( texCoord );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivTensorResultPartMgr::createResultColorTextureCoords( cvf::Vec2fArray* textureCoords,
const std::vector<TensorVisualization>& tensorVisualizations,
const cvf::ScalarMapper* mapper )
{
CVF_ASSERT( textureCoords );
CVF_ASSERT( mapper );
size_t vertexCount = tensorVisualizations.size() * 5;
if ( textureCoords->size() != vertexCount ) textureCoords->reserve( vertexCount );
for ( auto tensor : tensorVisualizations )
{
for ( size_t vxIdx = 0; vxIdx < 5; ++vxIdx )
{
cvf::Vec2f texCoord = mapper->mapToTextureCoord( tensor.principalValue );
textureCoords->add( texCoord );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RivTensorResultPartMgr::isTensorAddress( RigFemResultAddress address )
{
if ( address.resultPosType != RIG_ELEMENT_NODAL && address.resultPosType != RIG_INTEGRATION_POINT )
{
return false;
}
if ( !( address.fieldName == "SE" || address.fieldName == "ST" || address.fieldName == "NE" ) )
{
return false;
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RivTensorResultPartMgr::isValid( cvf::Vec3f resultVector )
{
// nan
if ( resultVector.x() != resultVector.x() || resultVector.y() != resultVector.y() || resultVector.z() != resultVector.z() )
{
return false;
}
// inf
if ( resultVector.x() == HUGE_VAL || resultVector.y() == HUGE_VAL || resultVector.z() == HUGE_VAL || resultVector.x() == -HUGE_VAL ||
resultVector.y() == -HUGE_VAL || resultVector.z() == -HUGE_VAL )
{
return false;
}
// zero
if ( resultVector == cvf::Vec3f::ZERO )
{
return false;
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RivTensorResultPartMgr::isPressure( float principalValue )
{
return principalValue >= 0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RivTensorResultPartMgr::isDrawable( cvf::Vec3f resultVector, bool showPrincipal ) const
{
if ( !showPrincipal )
{
return false;
}
if ( !isValid( resultVector ) )
{
return false;
}
if ( resultVector.length() <= m_rimReservoirView->tensorResults()->threshold() )
{
return false;
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::array<cvf::Vec3f, 5> RivTensorResultPartMgr::createArrowVertices( const TensorVisualization& tensorVisualization ) const
{
std::array<cvf::Vec3f, 5> vertices;
cvf::Vec3f headTop;
cvf::Vec3f shaftStart;
if ( tensorVisualization.isPressure )
{
headTop = tensorVisualization.vertex;
shaftStart = tensorVisualization.vertex + tensorVisualization.result;
}
else
{
headTop = tensorVisualization.vertex + tensorVisualization.result;
shaftStart = tensorVisualization.vertex;
}
float headWidth = 0.05 * tensorVisualization.result.length();
cvf::Vec3f headBottom = headTop - ( headTop - shaftStart ) * 0.2f;
cvf::Vec3f headBottomDirection = tensorVisualization.result ^ tensorVisualization.faceNormal;
cvf::Vec3f arrowBottomSegment = headBottomDirection.getNormalized() * headWidth;
vertices[0] = shaftStart;
vertices[1] = headBottom;
vertices[2] = headBottom + arrowBottomSegment;
vertices[3] = headBottom - arrowBottomSegment;
vertices[4] = headTop;
return vertices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::array<uint, 8> RivTensorResultPartMgr::createArrowIndices( uint startIndex ) const
{
std::array<uint, 8> indices;
indices[0] = startIndex;
indices[1] = startIndex + 1;
indices[2] = startIndex + 2;
indices[3] = startIndex + 3;
indices[4] = startIndex + 3;
indices[5] = startIndex + 4;
indices[6] = startIndex + 4;
indices[7] = startIndex + 2;
return indices;
}