ResInsight/ApplicationLibCode/ReservoirDataModel/RigMainGrid.cpp
2024-10-29 18:17:31 +01:00

1117 lines
41 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011- Statoil ASA
// Copyright (C) 2013- Ceetron Solutions AS
// Copyright (C) 2011-2012 Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigMainGrid.h"
#include "RiaLogging.h"
#include "RiaOpenMPTools.h"
#include "RiaResultNames.h"
#include "RigActiveCellInfo.h"
#include "RigHexIntersectionTools.h"
#include "RigNNCData.h"
#include "cvfAssert.h"
#include "cvfBoundingBoxTree.h"
RigMainGrid::RigMainGrid()
: RigGridBase( this )
{
m_displayModelOffset = cvf::Vec3d::ZERO;
m_gridIndex = 0;
m_gridId = 0;
m_gridIdToIndexMapping.push_back( 0 );
m_flipXAxis = false;
m_flipYAxis = false;
m_useMapAxes = false;
m_mapAxes = defaultMapAxes();
m_dualPorosity = false;
m_isFaceNormalsOutwards = true;
m_isFaceNormalsOutwardsComputed = false;
}
RigMainGrid::~RigMainGrid()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d>& RigMainGrid::nodes()
{
return m_nodes;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<cvf::Vec3d>& RigMainGrid::nodes() const
{
return m_nodes;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigMainGrid::totalCellCount() const
{
return m_cells.size();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigCell>& RigMainGrid::reservoirCells()
{
return m_cells;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<RigCell>& RigMainGrid::reservoirCells() const
{
return m_cells;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigGridBase* RigMainGrid::gridAndGridLocalIdxFromGlobalCellIdx( size_t globalCellIdx, size_t* gridLocalCellIdx )
{
CVF_ASSERT( globalCellIdx < totalCellCount() );
const RigCell& cell = this->cell( globalCellIdx );
RigGridBase* hostGrid = cell.hostGrid();
CVF_ASSERT( hostGrid );
if ( gridLocalCellIdx )
{
*gridLocalCellIdx = cell.gridLocalCellIndex();
}
return hostGrid;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigGridBase* RigMainGrid::gridAndGridLocalIdxFromGlobalCellIdx( size_t globalCellIdx, size_t* gridLocalCellIdx ) const
{
CVF_ASSERT( globalCellIdx < totalCellCount() );
const RigCell& cell = this->cell( globalCellIdx );
const RigGridBase* hostGrid = cell.hostGrid();
CVF_ASSERT( hostGrid );
if ( gridLocalCellIdx )
{
*gridLocalCellIdx = cell.gridLocalCellIndex();
}
return hostGrid;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigCell& RigMainGrid::cellByGridAndGridLocalCellIdx( size_t gridIdx, size_t gridLocalCellIdx ) const
{
return gridByIndex( gridIdx )->cell( gridLocalCellIdx );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigMainGrid::reservoirCellIndexByGridAndGridLocalCellIndex( size_t gridIdx, size_t gridLocalCellIdx ) const
{
return gridByIndex( gridIdx )->reservoirCellIndex( gridLocalCellIdx );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigMainGrid::findReservoirCellIndexFromPoint( const cvf::Vec3d& point ) const
{
size_t cellContainingPoint = cvf::UNDEFINED_SIZE_T;
cvf::BoundingBox pointBBox;
pointBBox.add( point );
std::vector<size_t> cellIndices = m_mainGrid->findIntersectingCells( pointBBox );
cvf::Vec3d hexCorners[8];
for ( size_t cellIndex : cellIndices )
{
m_mainGrid->cellCornerVertices( cellIndex, hexCorners );
if ( RigHexIntersectionTools::isPointInCell( point, hexCorners ) )
{
cellContainingPoint = cellIndex;
break;
}
}
return cellContainingPoint;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::addLocalGrid( RigLocalGrid* localGrid )
{
CVF_ASSERT( localGrid && localGrid->gridId() != cvf::UNDEFINED_INT ); // The grid ID must be set.
CVF_ASSERT( localGrid->gridId() >= 0 ); // We cant handle negative ID's if they exist.
m_localGrids.push_back( localGrid );
localGrid->setGridIndex( m_localGrids.size() ); // Maingrid itself has grid index 0
if ( m_gridIdToIndexMapping.size() <= static_cast<size_t>( localGrid->gridId() ) )
{
m_gridIdToIndexMapping.resize( localGrid->gridId() + 1, cvf::UNDEFINED_SIZE_T );
}
m_gridIdToIndexMapping[localGrid->gridId()] = localGrid->gridIndex();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigMainGrid::gridCountOnFile() const
{
size_t gridCount = 1;
for ( const auto& grid : m_localGrids )
{
if ( !grid->isTempGrid() )
{
gridCount++;
}
}
return gridCount;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigMainGrid::gridCount() const
{
return m_localGrids.size() + 1;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::initAllSubGridsParentGridPointer()
{
if ( !m_localGrids.empty() && m_localGrids[0]->parentGrid() == nullptr )
{
initSubGridParentPointer();
size_t i;
for ( i = 0; i < m_localGrids.size(); ++i )
{
m_localGrids[i]->initSubGridParentPointer();
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::initAllSubCellsMainGridCellIndex()
{
initSubCellsMainGridCellIndex();
size_t i;
for ( i = 0; i < m_localGrids.size(); ++i )
{
m_localGrids[i]->initSubCellsMainGridCellIndex();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RigMainGrid::displayModelOffset() const
{
return m_displayModelOffset;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::setDisplayModelOffset( cvf::Vec3d offset )
{
m_displayModelOffset = offset;
}
//--------------------------------------------------------------------------------------------------
/// Initialize pointers from grid to parent grid
/// Compute cell ranges for active and valid cells
/// Compute bounding box in world coordinates based on node coordinates
//--------------------------------------------------------------------------------------------------
void RigMainGrid::computeCachedData( std::string* aabbTreeInfo )
{
initAllSubGridsParentGridPointer();
initAllSubCellsMainGridCellIndex();
m_cellSearchTree = nullptr;
const double maxNumberOfLeafNodes = 4000000;
const double factor = std::ceil( cellCount() / maxNumberOfLeafNodes );
const size_t cellsPerBoundingBox = std::max( size_t( 1 ), static_cast<size_t>( factor ) );
if ( cellsPerBoundingBox > 1 )
{
buildCellSearchTreeOptimized( cellsPerBoundingBox );
}
else
{
buildCellSearchTree();
}
if ( aabbTreeInfo )
{
*aabbTreeInfo += "Cells per bounding box : " + std::to_string( cellsPerBoundingBox ) + "\n";
*aabbTreeInfo += m_cellSearchTree->info();
}
computeBoundingBox();
}
//--------------------------------------------------------------------------------------------------
/// Returns the grid with index \a localGridIndex. Main Grid itself has index 0. First LGR starts on 1
//--------------------------------------------------------------------------------------------------
RigGridBase* RigMainGrid::gridByIndex( size_t localGridIndex )
{
if ( localGridIndex == 0 ) return this;
CVF_ASSERT( localGridIndex - 1 < m_localGrids.size() );
return m_localGrids[localGridIndex - 1].p();
}
//--------------------------------------------------------------------------------------------------
/// Returns the grid with index \a localGridIndex. Main Grid itself has index 0. First LGR starts on 1
//--------------------------------------------------------------------------------------------------
const RigGridBase* RigMainGrid::gridByIndex( size_t localGridIndex ) const
{
if ( localGridIndex == 0 ) return this;
CVF_ASSERT( localGridIndex - 1 < m_localGrids.size() );
return m_localGrids[localGridIndex - 1].p();
}
//--------------------------------------------------------------------------------------------------
/// Returns the grid with the given name. Main Grid itself could be retreived by using name ""
//--------------------------------------------------------------------------------------------------
RigGridBase* RigMainGrid::gridByName( const std::string& name )
{
if ( name.empty() ) return this;
for ( auto& grid : m_localGrids )
{
if ( grid->gridName() == name ) return grid.p();
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::setFlipAxis( bool flipXAxis, bool flipYAxis )
{
bool needFlipX = false;
bool needFlipY = false;
if ( m_flipXAxis != flipXAxis )
{
needFlipX = true;
}
if ( m_flipYAxis != flipYAxis )
{
needFlipY = true;
}
if ( needFlipX || needFlipY )
{
for ( size_t i = 0; i < m_nodes.size(); i++ )
{
if ( needFlipX )
{
m_nodes[i].x() *= -1.0;
}
if ( needFlipY )
{
m_nodes[i].y() *= -1.0;
}
}
m_flipXAxis = flipXAxis;
m_flipYAxis = flipYAxis;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigGridBase* RigMainGrid::gridById( int localGridId )
{
CVF_ASSERT( localGridId >= 0 && static_cast<size_t>( localGridId ) < m_gridIdToIndexMapping.size() );
return gridByIndex( m_gridIdToIndexMapping[localGridId] );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigMainGrid::totalTemporaryGridCellCount() const
{
size_t cellCount = 0;
for ( const auto& grid : m_localGrids )
{
if ( grid->isTempGrid() )
{
cellCount += grid->cellCount();
}
}
return cellCount;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigNNCData* RigMainGrid::nncData()
{
if ( m_nncData.isNull() )
{
m_nncData = new RigNNCData;
}
return m_nncData.p();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::setFaults( const cvf::Collection<RigFault>& faults )
{
m_faults = faults;
#pragma omp parallel for
for ( int i = 0; i < static_cast<int>( m_faults.size() ); i++ )
{
m_faults[i]->computeFaultFacesFromCellRanges( mainGrid() );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const cvf::Collection<RigFault>& RigMainGrid::faults() const
{
return m_faults;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Collection<RigFault>& RigMainGrid::faults()
{
return m_faults;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigMainGrid::hasFaultWithName( const QString& name ) const
{
for ( auto fault : m_faults )
{
if ( fault->name() == name )
{
return true;
}
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::computeBoundingBox()
{
m_boundingBox.reset();
const int numberOfThreads = RiaOpenMPTools::availableThreadCount();
std::vector<cvf::BoundingBox> threadBoundingBoxes( numberOfThreads );
#pragma omp parallel
{
int myThread = RiaOpenMPTools::currentThreadIndex();
// NB! We are inside a parallel section, do not use "parallel for" here
#pragma omp for
for ( long i = 0; i < static_cast<long>( m_nodes.size() ); i++ )
{
threadBoundingBoxes[myThread].add( m_nodes[i] );
}
}
for ( int i = 0; i < numberOfThreads; i++ )
{
m_boundingBox.add( threadBoundingBoxes[i] );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::calculateFaults( const RigActiveCellInfo* activeCellInfo )
{
if ( hasFaultWithName( RiaResultNames::undefinedGridFaultName() ) &&
hasFaultWithName( RiaResultNames::undefinedGridFaultWithInactiveName() ) )
{
// RiaLogging::debug(QString("Calculate faults already run for grid."));
return;
}
m_faultsPrCellAcc = new RigFaultsPrCellAccumulator( totalCellCount() );
// Spread fault idx'es on the cells from the faults
for ( size_t fIdx = 0; fIdx < m_faults.size(); ++fIdx )
{
m_faults[fIdx]->accumulateFaultsPrCell( m_faultsPrCellAcc.p(), static_cast<int>( fIdx ) );
}
// Find the geometrical faults that is in addition: Has no user defined (eclipse) fault assigned.
// Separate the grid faults that has an inactive cell as member
RigFault* unNamedFault = new RigFault;
unNamedFault->setName( RiaResultNames::undefinedGridFaultName() );
int unNamedFaultIdx = static_cast<int>( m_faults.size() );
m_faults.push_back( unNamedFault );
RigFault* unNamedFaultWithInactive = new RigFault;
unNamedFaultWithInactive->setName( RiaResultNames::undefinedGridFaultWithInactiveName() );
int unNamedFaultWithInactiveIdx = static_cast<int>( m_faults.size() );
m_faults.push_back( unNamedFaultWithInactive );
const std::vector<cvf::Vec3d>& vxs = m_mainGrid->nodes();
std::vector<RigFault::FaultFace>& unNamedFaultFaces = unNamedFault->faultFaces();
std::vector<RigFault::FaultFace>& unNamedFaultFacesInactive = unNamedFaultWithInactive->faultFaces();
for ( int gcIdx = 0; gcIdx < static_cast<int>( totalCellCount() ); ++gcIdx )
{
addUnNamedFaultFaces( gcIdx,
activeCellInfo,
vxs,
unNamedFaultIdx,
unNamedFaultWithInactiveIdx,
unNamedFaultFaces,
unNamedFaultFacesInactive,
m_faultsPrCellAcc.p() );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::addUnNamedFaultFaces( int gcIdx,
const RigActiveCellInfo* activeCellInfo,
const std::vector<cvf::Vec3d>& vxs,
int unNamedFaultIdx,
int unNamedFaultWithInactiveIdx,
std::vector<RigFault::FaultFace>& unNamedFaultFaces,
std::vector<RigFault::FaultFace>& unNamedFaultFacesInactive,
RigFaultsPrCellAccumulator* faultsPrCellAcc ) const
{
if ( cell( gcIdx ).isInvalid() )
{
return;
}
size_t neighborReservoirCellIdx;
size_t neighborGridCellIdx;
size_t i = 0;
size_t j = 0;
size_t k = 0;
const RigGridBase* hostGrid = nullptr;
bool firstNO_FAULTFaceForCell = true;
bool isCellActive = true;
char upperLimitForFaceType = cvf::StructGridInterface::FaceType::POS_K;
// Compare only I and J faces
for ( char faceIdx = 0; faceIdx < upperLimitForFaceType; ++faceIdx )
{
cvf::StructGridInterface::FaceType face = cvf::StructGridInterface::FaceType( faceIdx );
// For faces that has no used defined Fault assigned:
if ( m_faultsPrCellAcc->faultIdx( gcIdx, face ) == RigFaultsPrCellAccumulator::NO_FAULT )
{
// Find neighbor cell
if ( firstNO_FAULTFaceForCell ) // To avoid doing this for every face, and only when detecting a NO_FAULT
{
size_t gridLocalCellIndex;
hostGrid = gridAndGridLocalIdxFromGlobalCellIdx( gcIdx, &gridLocalCellIndex );
hostGrid->ijkFromCellIndex( gridLocalCellIndex, &i, &j, &k );
isCellActive = activeCellInfo->isActive( gcIdx );
firstNO_FAULTFaceForCell = false;
}
if ( !hostGrid->cellIJKNeighbor( i, j, k, face, &neighborGridCellIdx ) )
{
continue;
}
neighborReservoirCellIdx = hostGrid->reservoirCellIndex( neighborGridCellIdx );
if ( cell( neighborReservoirCellIdx ).isInvalid() )
{
continue;
}
bool isNeighborCellActive = activeCellInfo->isActive( neighborReservoirCellIdx );
double tolerance = 1e-6;
std::array<size_t, 4> faceIdxs;
cell( gcIdx ).faceIndices( face, &faceIdxs );
std::array<size_t, 4> nbFaceIdxs;
cell( neighborReservoirCellIdx ).faceIndices( StructGridInterface::oppositeFace( face ), &nbFaceIdxs );
bool sharedFaceVertices = true;
if ( sharedFaceVertices && vxs[faceIdxs[0]].pointDistance( vxs[nbFaceIdxs[0]] ) > tolerance ) sharedFaceVertices = false;
if ( sharedFaceVertices && vxs[faceIdxs[1]].pointDistance( vxs[nbFaceIdxs[3]] ) > tolerance ) sharedFaceVertices = false;
if ( sharedFaceVertices && vxs[faceIdxs[2]].pointDistance( vxs[nbFaceIdxs[2]] ) > tolerance ) sharedFaceVertices = false;
if ( sharedFaceVertices && vxs[faceIdxs[3]].pointDistance( vxs[nbFaceIdxs[1]] ) > tolerance ) sharedFaceVertices = false;
if ( sharedFaceVertices )
{
continue;
}
// To avoid doing this calculation for the opposite face
int faultIdx = unNamedFaultIdx;
if ( !( isCellActive && isNeighborCellActive ) ) faultIdx = unNamedFaultWithInactiveIdx;
faultsPrCellAcc->setFaultIdx( gcIdx, face, faultIdx );
faultsPrCellAcc->setFaultIdx( neighborReservoirCellIdx, StructGridInterface::oppositeFace( face ), faultIdx );
// Add as fault face only if the grid index is less than the neighbors
if ( static_cast<size_t>( gcIdx ) < neighborReservoirCellIdx )
{
RigFault::FaultFace ff( gcIdx, cvf::StructGridInterface::FaceType( faceIdx ), neighborReservoirCellIdx );
if ( isCellActive && isNeighborCellActive )
{
unNamedFaultFaces.push_back( ff );
}
else
{
unNamedFaultFacesInactive.push_back( ff );
}
}
else
{
CVF_FAIL_MSG( "Found fault with global neighbor index less than the native index. " );
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::distributeNNCsToFaults()
{
if ( m_faultsPrCellAcc.isNull() ) return;
const RigConnectionContainer& nncs = nncData()->allConnections();
for ( size_t nncIdx = 0; nncIdx < nncs.size(); ++nncIdx )
{
// Find the fault for each side of the nnc
const RigConnection& conn = nncs[nncIdx];
int fIdx1 = RigFaultsPrCellAccumulator::NO_FAULT;
int fIdx2 = RigFaultsPrCellAccumulator::NO_FAULT;
if ( conn.face() != StructGridInterface::NO_FACE )
{
fIdx1 = m_faultsPrCellAcc->faultIdx( conn.c1GlobIdx(), conn.face() );
fIdx2 = m_faultsPrCellAcc->faultIdx( conn.c2GlobIdx(), StructGridInterface::oppositeFace( conn.face() ) );
}
if ( fIdx1 < 0 && fIdx2 < 0 )
{
cvf::String lgrString( "Same Grid" );
if ( cell( conn.c1GlobIdx() ).hostGrid() != cell( conn.c2GlobIdx() ).hostGrid() )
{
lgrString = "Different Grid";
}
// cvf::Trace::show("NNC: No Fault for NNC C1: " + cvf::String((int)conn.m_c1GlobIdx) + " C2: " +
// cvf::String((int)conn.m_c2GlobIdx) + " Grid: " + lgrString);
}
if ( fIdx1 >= 0 )
{
// Add the connection to both, if they are different.
m_faults[fIdx1]->connectionIndices().push_back( nncIdx );
}
if ( fIdx2 != fIdx1 )
{
if ( fIdx2 >= 0 )
{
m_faults[fIdx2]->connectionIndices().push_back( nncIdx );
}
}
}
}
//--------------------------------------------------------------------------------------------------
/// The cell is normally inverted due to Depth becoming -Z at import,
/// but if (only) one of the flipX/Y is done, the cell is back to normal
//--------------------------------------------------------------------------------------------------
bool RigMainGrid::isFaceNormalsOutwards() const
{
if ( !m_isFaceNormalsOutwardsComputed )
{
std::vector<size_t> reservoirCellIndices;
reservoirCellIndices.resize( totalCellCount() );
std::iota( reservoirCellIndices.begin(), reservoirCellIndices.end(), 0 );
computeFaceNormalsDirection( reservoirCellIndices );
}
return m_isFaceNormalsOutwards;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::computeFaceNormalsDirection( const std::vector<size_t>& reservoirCellIndices ) const
{
auto isValidAndFaceNormalDir =
[]( const double ijSize, const double kSize, const RigCell& cell, cvf::StructGridInterface::FaceType face ) -> std::pair<bool, bool>
{
const cvf::Vec3d cellCenter = cell.center();
const cvf::Vec3d faceCenter = cell.faceCenter( face );
const cvf::Vec3d faceNormal = cell.faceNormalWithAreaLength( face );
if ( ( faceCenter - cellCenter ).length() > 0.2 * ijSize && ( faceNormal.length() > ( 0.2 * ijSize * 0.2 * kSize ) ) )
{
// Cell is assumed ok to use, so calculate whether the normals are outwards or inwards
if ( ( faceCenter - cellCenter ) * faceNormal >= 0 )
{
return { true, true };
}
return { true, false };
}
return { false, false };
};
double ijSize = characteristicIJCellSize();
double iSize, jSize, kSize = 0.0;
characteristicCellSizes( &iSize, &jSize, &kSize );
const double characteristicVolume = iSize * jSize * kSize;
for ( const auto& index : reservoirCellIndices )
{
const auto& cell = this->cell( index );
if ( !cell.isInvalid() )
{
// Some cells can be very twisted and distorted. Use a volume criteria to find a reasonably regular cell.
const double cellVolume = cell.volume();
if ( cellVolume < characteristicVolume * 0.8 ) continue;
auto [isValid1, direction1] = isValidAndFaceNormalDir( ijSize, kSize, cell, cvf::StructGridInterface::FaceType::NEG_I );
auto [isValid2, direction2] = isValidAndFaceNormalDir( ijSize, kSize, cell, cvf::StructGridInterface::FaceType::POS_I );
auto [isValid3, direction3] = isValidAndFaceNormalDir( ijSize, kSize, cell, cvf::StructGridInterface::FaceType::NEG_J );
auto [isValid4, direction4] = isValidAndFaceNormalDir( ijSize, kSize, cell, cvf::StructGridInterface::FaceType::POS_J );
if ( !isValid1 || !isValid2 || !isValid3 || !isValid4 ) continue;
if ( direction1 && direction2 && direction3 && direction4 )
{
// All face normals pointing outwards
m_isFaceNormalsOutwards = true;
m_isFaceNormalsOutwardsComputed = true;
return;
}
if ( !direction1 && !direction2 && !direction3 && !direction4 )
{
// All cell face normals pointing inwards
m_isFaceNormalsOutwards = false;
m_isFaceNormalsOutwardsComputed = true;
return;
}
}
}
// If this code is reached, it was not possible to get a consistent answer on the direction of a cell surface
// normal. Set a default direction for face normals.
m_isFaceNormalsOutwards = true;
m_isFaceNormalsOutwardsComputed = true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigFault* RigMainGrid::findFaultFromCellIndexAndCellFace( size_t reservoirCellIndex, cvf::StructGridInterface::FaceType face ) const
{
if ( m_faultsPrCellAcc.isNull() ) return nullptr;
if ( face == cvf::StructGridInterface::NO_FACE ) return nullptr;
int faultIdx = m_faultsPrCellAcc->faultIdx( reservoirCellIndex, face );
if ( faultIdx != RigFaultsPrCellAccumulator::NO_FAULT )
{
return m_faults.at( faultIdx );
}
#if 0
for (size_t i = 0; i < m_faults.size(); i++)
{
const RigFault* rigFault = m_faults.at(i);
const std::vector<RigFault::FaultFace>& faultFaces = rigFault->faultFaces();
for (size_t fIdx = 0; fIdx < faultFaces.size(); fIdx++)
{
if (faultFaces[fIdx].m_nativeReservoirCellIndex == cellIndex)
{
if (face == faultFaces[fIdx].m_nativeFace )
{
return rigFault;
}
}
if (faultFaces[fIdx].m_oppositeReservoirCellIndex == cellIndex)
{
if (face == cvf::StructGridInterface::oppositeFace(faultFaces[fIdx].m_nativeFace))
{
return rigFault;
}
}
}
}
#endif
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<size_t> RigMainGrid::findIntersectingCells( const cvf::BoundingBox& inputBB ) const
{
CVF_ASSERT( m_cellSearchTree.notNull() );
std::vector<size_t> cellIndices;
m_cellSearchTree->findIntersections( inputBB, &cellIndices );
return cellIndices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::buildCellSearchTree()
{
if ( m_cellSearchTree.isNull() )
{
// build tree
size_t cellCount = totalCellCount();
std::vector<size_t> cellIndicesForBoundingBoxes;
std::vector<cvf::BoundingBox> cellBoundingBoxes;
#pragma omp parallel
{
int numberOfThreads = RiaOpenMPTools::availableThreadCount();
size_t threadCellCount = std::ceil( cellCount / static_cast<double>( numberOfThreads ) );
std::vector<size_t> threadIndicesForBoundingBoxes;
std::vector<cvf::BoundingBox> threadBoundingBoxes;
threadIndicesForBoundingBoxes.reserve( threadCellCount );
threadBoundingBoxes.reserve( threadCellCount );
#pragma omp for
for ( int cIdx = 0; cIdx < (int)cellCount; ++cIdx )
{
auto& cell = this->cell( cIdx );
if ( cell.isInvalid() ) continue;
const std::array<size_t, 8>& cellIndices = cell.cornerIndices();
cvf::BoundingBox cellBB;
for ( size_t i : cellIndices )
{
cellBB.add( m_nodes[i] );
}
if ( cellBB.isValid() )
{
threadIndicesForBoundingBoxes.emplace_back( cIdx );
threadBoundingBoxes.emplace_back( cellBB );
}
}
threadIndicesForBoundingBoxes.shrink_to_fit();
threadBoundingBoxes.shrink_to_fit();
#pragma omp critical
{
cellIndicesForBoundingBoxes.insert( cellIndicesForBoundingBoxes.end(),
threadIndicesForBoundingBoxes.begin(),
threadIndicesForBoundingBoxes.end() );
cellBoundingBoxes.insert( cellBoundingBoxes.end(), threadBoundingBoxes.begin(), threadBoundingBoxes.end() );
}
}
m_cellSearchTree = new cvf::BoundingBoxTree;
m_cellSearchTree->buildTreeFromBoundingBoxes( cellBoundingBoxes, &cellIndicesForBoundingBoxes );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::buildCellSearchTreeOptimized( size_t cellsPerBoundingBox )
{
int threadCount = RiaOpenMPTools::availableThreadCount();
std::vector<std::vector<std::vector<int>>> threadCellIndicesForBoundingBoxes( threadCount );
std::vector<std::vector<cvf::BoundingBox>> threadCellBoundingBoxes( threadCount );
#pragma omp parallel
{
int myThread = RiaOpenMPTools::currentThreadIndex();
#pragma omp for
for ( int i = 0; i < static_cast<int>( cellCountI() ); i++ )
{
for ( size_t j = 0; j < cellCountJ(); j++ )
{
size_t k = 0;
while ( k < cellCountK() )
{
size_t kCount = 0;
std::vector<int> aggregatedCellIndices;
cvf::BoundingBox accumulatedBB;
while ( ( kCount < cellsPerBoundingBox ) && ( k + kCount < cellCountK() ) )
{
size_t cellIdx = cellIndexFromIJK( i, j, k + kCount );
const auto& rigCell = cell( cellIdx );
if ( !rigCell.isInvalid() )
{
aggregatedCellIndices.push_back( static_cast<int>( cellIdx ) );
// Add all cells in sub grid contained in this main grid cell
if ( auto subGrid = rigCell.subGrid() )
{
for ( size_t localIdx = 0; localIdx < subGrid->cellCount(); localIdx++ )
{
const auto& localCell = subGrid->cell( localIdx );
if ( localCell.mainGridCellIndex() == cellIdx )
{
aggregatedCellIndices.push_back( static_cast<int>( subGrid->reservoirCellIndex( localIdx ) ) );
}
}
}
const std::array<size_t, 8>& cellIndices = rigCell.cornerIndices();
cvf::BoundingBox cellBB;
for ( size_t i : cellIndices )
{
cellBB.add( m_nodes[i] );
}
if ( cellBB.isValid() ) accumulatedBB.add( cellBB );
}
kCount++;
}
k += kCount;
kCount = 0;
threadCellIndicesForBoundingBoxes[myThread].emplace_back( aggregatedCellIndices );
threadCellBoundingBoxes[myThread].emplace_back( accumulatedBB );
}
}
}
}
std::vector<std::vector<int>> cellIndicesForBoundingBoxes;
std::vector<cvf::BoundingBox> cellBoundingBoxes;
for ( auto i = 0; i < threadCount; i++ )
{
cellIndicesForBoundingBoxes.insert( cellIndicesForBoundingBoxes.end(),
threadCellIndicesForBoundingBoxes[i].begin(),
threadCellIndicesForBoundingBoxes[i].end() );
cellBoundingBoxes.insert( cellBoundingBoxes.end(), threadCellBoundingBoxes[i].begin(), threadCellBoundingBoxes[i].end() );
}
m_cellSearchTree = new cvf::BoundingBoxTree;
m_cellSearchTree->buildTreeFromBoundingBoxesOptimized( cellBoundingBoxes, cellIndicesForBoundingBoxes );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::BoundingBox RigMainGrid::boundingBox() const
{
return m_boundingBox;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigMainGrid::isTempGrid() const
{
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::string& RigMainGrid::associatedWellPathName() const
{
static const std::string EMPTY_STRING;
return EMPTY_STRING;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::setUseMapAxes( bool useMapAxes )
{
m_useMapAxes = useMapAxes;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigMainGrid::useMapAxes() const
{
return m_useMapAxes;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::setMapAxes( const std::array<double, 6>& mapAxes )
{
m_mapAxes = mapAxes;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::array<double, 6>& RigMainGrid::mapAxes() const
{
return m_mapAxes;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::array<float, 6> RigMainGrid::mapAxesF() const
{
std::array<float, 6> floatAxes;
for ( size_t i = 0; i < 6; ++i )
{
floatAxes[i] = (float)m_mapAxes[i];
}
return floatAxes;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Mat4d RigMainGrid::mapAxisTransform() const
{
cvf::Mat4d mapAxisTrans;
if ( m_useMapAxes )
{
cvf::Vec3d origin( m_mapAxes[2], m_mapAxes[3], 0.0 );
cvf::Vec3d xAxis = cvf::Vec3d( m_mapAxes[4] - origin[0], m_mapAxes[5] - origin[1], 0.0 ).getNormalized();
cvf::Vec3d yAxis = cvf::Vec3d( m_mapAxes[0] - origin[0], m_mapAxes[1] - origin[1], 0.0 ).getNormalized();
cvf::Vec3d zAxis( 0.0, 0.0, 1.0 );
mapAxisTrans = cvf::Mat4d::fromCoordSystemAxes( &xAxis, &yAxis, &zAxis );
mapAxisTrans.setTranslation( origin );
mapAxisTrans.invert();
}
else
{
mapAxisTrans.setIdentity();
}
return mapAxisTrans;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigMainGrid::isDualPorosity() const
{
return m_dualPorosity;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigMainGrid::setDualPorosity( bool enable )
{
m_dualPorosity = enable;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::array<double, 6> RigMainGrid::defaultMapAxes()
{
const double origin[2] = { 0.0, 0.0 };
const double xPoint[2] = { 1.0, 0.0 };
const double yPoint[2] = { 0.0, 1.0 };
// Order (see Elipse Reference Manual for keyword MAPAXES): Y_x, Y_y, O_x, O_y, X_x, X_y
return { yPoint[0], yPoint[1], origin[0], origin[1], xPoint[0], xPoint[1] };
}