ResInsight/ApplicationLibCode/UnitTests/RiaStatisticsTools-Test.cpp
2024-11-13 15:36:44 +01:00

116 lines
3.7 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "gtest/gtest.h"
#include "RiaStatisticsTools.h"
#include <QDebug>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST( RiaStatisticsTools, NoCorrelation )
{
const int N = 1000;
std::vector<double> a, b;
a.reserve( N );
b.reserve( N );
for ( int i = 0; i < N; ++i )
{
a.push_back( (double)i );
}
for ( int i = 0; i < N; ++i )
{
b.push_back( (double)std::rand() );
}
double correlation = RiaStatisticsTools::pearsonCorrelation( a, b );
EXPECT_LE( correlation, 0.25 );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST( RiaStatisticsTools, FullCorrelation )
{
const int N = 1000;
std::vector<double> a, b;
a.reserve( N );
b.reserve( N );
for ( int i = 0; i < N; ++i )
{
a.push_back( (double)i );
}
for ( int i = 0; i < N; ++i )
{
b.push_back( i * 2.0 + 1.0 );
}
double correlation = RiaStatisticsTools::pearsonCorrelation( a, b );
EXPECT_NEAR( correlation, 1.0, 1.0e-2 );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST( RiaStatisticsTools, NegativeCorrelation )
{
const int N = 1000;
std::vector<double> a, b;
a.reserve( N );
b.reserve( N );
for ( int i = 0; i < N; ++i )
{
a.push_back( (double)i );
}
for ( int i = 0; i < N; ++i )
{
b.push_back( i * -2.0 + 1.0 );
}
double correlation = RiaStatisticsTools::pearsonCorrelation( a, b );
EXPECT_NEAR( correlation, -1.0, 1.0e-2 );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST( RiaStatisticsTools, MinValue )
{
const int N = 1000;
std::vector<double> a;
for ( int i = 10; i < N; ++i )
{
a.push_back( static_cast<double>( i ) );
}
double minValue = RiaStatisticsTools::minimumValue( a );
EXPECT_EQ( minValue, 10.0 );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
TEST( RiaStatisticsTools, MaxValue )
{
const int N = 1000;
std::vector<double> a;
for ( int i = 10; i < N; ++i )
{
a.push_back( static_cast<double>( i ) );
}
double maxValue = RiaStatisticsTools::maximumValue( a );
EXPECT_EQ( maxValue, 999.0 );
}