mirror of
https://github.com/OPM/ResInsight.git
synced 2025-01-03 20:57:39 -06:00
168 lines
7.5 KiB
C++
168 lines
7.5 KiB
C++
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2017- Statoil ASA
|
|
//
|
|
// ResInsight is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
|
// for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "RigTransmissibilityEquations.h"
|
|
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigTransmissibilityEquations::wellBoreTransmissibilityComponent( double cellPerforationVectorComponent,
|
|
double permeabilityNormalDirection1,
|
|
double permeabilityNormalDirection2,
|
|
double cellSizeNormalDirection1,
|
|
double cellSizeNormalDirection2,
|
|
double wellRadius,
|
|
double skinFactor,
|
|
double cDarcyForRelevantUnit )
|
|
{
|
|
double K = cvf::Math::sqrt( permeabilityNormalDirection1 * permeabilityNormalDirection2 );
|
|
|
|
const double lowerLimit = 1.0e-9;
|
|
if ( std::fabs( permeabilityNormalDirection1 * permeabilityNormalDirection2 ) < lowerLimit )
|
|
{
|
|
// Guard further computations to avoid nan values
|
|
return 0.0;
|
|
}
|
|
|
|
double nominator = cDarcyForRelevantUnit * 2 * cvf::PI_D * K * cellPerforationVectorComponent;
|
|
|
|
double peaceManRad = peacemanRadius( permeabilityNormalDirection1,
|
|
permeabilityNormalDirection2,
|
|
cellSizeNormalDirection1,
|
|
cellSizeNormalDirection2 );
|
|
|
|
double denominator = log( peaceManRad / wellRadius ) + skinFactor;
|
|
|
|
double trans = nominator / denominator;
|
|
return trans;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigTransmissibilityEquations::totalConnectionFactor( double transX, double transY, double transZ )
|
|
{
|
|
return cvf::Math::sqrt( pow( transX, 2.0 ) + pow( transY, 2.0 ) + pow( transZ, 2.0 ) );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigTransmissibilityEquations::totalKh( double cellPermX,
|
|
double cellPermY,
|
|
double cellPermZ,
|
|
const cvf::Vec3d& internalCellLengths,
|
|
double lateralNtg,
|
|
double ntg )
|
|
{
|
|
// Compute kh for each local grid cell axis
|
|
// Use permeability values for the two other axis
|
|
double khx = sqrt( cellPermY * cellPermZ ) * internalCellLengths.x() * lateralNtg;
|
|
double khy = sqrt( cellPermX * cellPermZ ) * internalCellLengths.y() * lateralNtg;
|
|
double khz = sqrt( cellPermX * cellPermY ) * internalCellLengths.z() * ntg;
|
|
|
|
const double totKh = cvf::Math::sqrt( khx * khx + khy * khy + khz * khz );
|
|
|
|
return totKh;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigTransmissibilityEquations::effectiveK( double cellPermX,
|
|
double cellPermY,
|
|
double cellPermZ,
|
|
const cvf::Vec3d& internalCellLengths,
|
|
double lateralNtg,
|
|
double ntg )
|
|
{
|
|
// Compute kh for each local grid cell axis
|
|
// Use permeability values for the two other axis
|
|
|
|
double lx = internalCellLengths.x() * lateralNtg;
|
|
double ly = internalCellLengths.y() * lateralNtg;
|
|
double lz = internalCellLengths.z() * ntg;
|
|
|
|
double khx = sqrt( cellPermY * cellPermZ ) * lx;
|
|
double khy = sqrt( cellPermX * cellPermZ ) * ly;
|
|
double khz = sqrt( cellPermX * cellPermY ) * lz;
|
|
|
|
double nominator = khx + khy + khz;
|
|
double denominator = lx + ly + lz;
|
|
|
|
const double effK = nominator / denominator;
|
|
|
|
return effK;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigTransmissibilityEquations::effectiveH( const cvf::Vec3d& internalCellLengths, double lateralNtg, double ntg )
|
|
{
|
|
double lx = internalCellLengths.x() * lateralNtg;
|
|
double ly = internalCellLengths.y() * lateralNtg;
|
|
double lz = internalCellLengths.z() * ntg;
|
|
|
|
double effH = cvf::Math::sqrt( lx * lx + ly * ly + lz * lz );
|
|
|
|
return effH;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigTransmissibilityEquations::permeability( const double conductivity, const double width )
|
|
{
|
|
double threshold = 1e-7;
|
|
|
|
if ( std::fabs( width ) > threshold )
|
|
{
|
|
double perm = conductivity / width;
|
|
|
|
return perm;
|
|
}
|
|
else
|
|
{
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigTransmissibilityEquations::peacemanRadius( double permeabilityNormalDirection1,
|
|
double permeabilityNormalDirection2,
|
|
double cellSizeNormalDirection1,
|
|
double cellSizeNormalDirection2 )
|
|
{
|
|
double numerator = cvf::Math::sqrt(
|
|
pow( cellSizeNormalDirection2, 2.0 ) * pow( permeabilityNormalDirection1 / permeabilityNormalDirection2, 0.5 ) +
|
|
pow( cellSizeNormalDirection1, 2.0 ) * pow( permeabilityNormalDirection2 / permeabilityNormalDirection1, 0.5 ) );
|
|
|
|
double denominator = pow( ( permeabilityNormalDirection1 / permeabilityNormalDirection2 ), 0.25 ) +
|
|
pow( ( permeabilityNormalDirection2 / permeabilityNormalDirection1 ), 0.25 );
|
|
|
|
double r0 = 0.28 * numerator / denominator;
|
|
|
|
return r0;
|
|
}
|