ResInsight/ApplicationLibCode/ReservoirDataModel/RigWellPath.cpp
Magne Sjaastad 8bab748fa6 Improve MSW export including multi lateral wells
Based on branch https://github.com/OPM/ResInsight/tree/system-msw-refactor

- Move completion settings to property of well path
- Rename to RimFishbones
- Export implicit COMPSEGS for fishbones main bore
- Add valve for each branch
- Increase version number to be able to handle import of legacy project files
2021-02-26 14:59:57 +01:00

677 lines
25 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigWellPath.h"
#include "cvfBoundingBox.h"
#include "cvfGeometryTools.h"
#include "cvfPlane.h"
#include <algorithm>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellPath::RigWellPath()
: cvf::Object()
, m_hasDatumElevation( false )
, m_datumElevation( 0.0 )
, m_uniqueStartIndex( 0u )
, m_uniqueEndIndex( std::numeric_limits<size_t>::max() )
, objectBeingDeleted( this )
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellPath::RigWellPath( const RigWellPath& rhs )
: cvf::Object()
, m_wellPathPoints( rhs.m_wellPathPoints )
, m_measuredDepths( rhs.m_measuredDepths )
, m_hasDatumElevation( rhs.m_hasDatumElevation )
, m_datumElevation( rhs.m_datumElevation )
, m_uniqueStartIndex( rhs.m_uniqueStartIndex )
, m_uniqueEndIndex( rhs.m_uniqueEndIndex )
, objectBeingDeleted( this )
{
CVF_ASSERT( m_wellPathPoints.size() == m_measuredDepths.size() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellPath::RigWellPath( const std::vector<cvf::Vec3d>& wellPathPoints, const std::vector<double>& measuredDepths )
: cvf::Object()
, m_wellPathPoints( wellPathPoints )
, m_measuredDepths( measuredDepths )
, m_hasDatumElevation( false )
, m_datumElevation( 0.0 )
, m_uniqueStartIndex( 0u )
, m_uniqueEndIndex( std::numeric_limits<size_t>::max() )
, objectBeingDeleted( this )
{
CVF_ASSERT( m_wellPathPoints.size() == m_measuredDepths.size() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellPath& RigWellPath::operator=( const RigWellPath& rhs )
{
m_wellPathPoints = rhs.m_wellPathPoints;
m_measuredDepths = rhs.m_measuredDepths;
CVF_ASSERT( m_wellPathPoints.size() == m_measuredDepths.size() );
m_hasDatumElevation = rhs.m_hasDatumElevation;
m_datumElevation = rhs.m_datumElevation;
m_uniqueStartIndex = rhs.m_uniqueStartIndex;
m_uniqueEndIndex = rhs.m_uniqueEndIndex;
return *this;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellPath::~RigWellPath()
{
objectBeingDeleted.send();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<cvf::Vec3d>& RigWellPath::wellPathPoints() const
{
return m_wellPathPoints;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigWellPath::measuredDepths() const
{
return m_measuredDepths;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigWellPath::trueVerticalDepths() const
{
std::vector<double> tvds;
for ( const cvf::Vec3d& point : m_wellPathPoints )
{
tvds.push_back( std::fabs( point.z() ) );
}
return tvds;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigWellPath::setWellPathPoints( const std::vector<cvf::Vec3d>& wellPathPoints )
{
m_wellPathPoints = wellPathPoints;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigWellPath::setMeasuredDepths( const std::vector<double>& measuredDepths )
{
m_measuredDepths = measuredDepths;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigWellPath::addWellPathPoint( const cvf::Vec3d& wellPathPoint )
{
m_wellPathPoints.push_back( wellPathPoint );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigWellPath::addMeasuredDepth( double measuredDepth )
{
m_measuredDepths.push_back( measuredDepth );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigWellPath::setDatumElevation( double value )
{
m_hasDatumElevation = true;
m_datumElevation = value;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigWellPath::hasDatumElevation() const
{
return m_hasDatumElevation;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigWellPath::datumElevation() const
{
return m_datumElevation;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigWellPath::rkbDiff() const
{
if ( hasDatumElevation() )
{
return datumElevation();
}
// If measured depth is zero, use the z-value of the well path points
if ( !m_wellPathPoints.empty() && !m_measuredDepths.empty() )
{
double epsilon = 1e-3;
if ( cvf::Math::abs( m_measuredDepths[0] ) < epsilon )
{
double diff = m_measuredDepths[0] - ( -wellPathPoints()[0].z() );
return diff;
}
if ( cvf::Math::abs( m_wellPathPoints[0].z() ) < epsilon )
{
return m_measuredDepths[0]; // Assume a vertical drop before the first md point.
}
}
return HUGE_VAL;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d
RigWellPath::interpolatedVectorValuesAlongWellPath( const std::vector<cvf::Vec3d>& vectorValuesAlongWellPath,
double measuredDepth,
double* horizontalLengthAlongWellToStartClipPoint /*= nullptr*/ ) const
{
CVF_ASSERT( vectorValuesAlongWellPath.size() == m_wellPathPoints.size() );
cvf::Vec3d interpolatedVector = cvf::Vec3d::ZERO;
if ( horizontalLengthAlongWellToStartClipPoint ) *horizontalLengthAlongWellToStartClipPoint = 0.0;
size_t vxIdx = 0;
while ( vxIdx < m_measuredDepths.size() && m_measuredDepths.at( vxIdx ) < measuredDepth )
{
if ( vxIdx > 0 && horizontalLengthAlongWellToStartClipPoint )
{
cvf::Vec3d segment = m_wellPathPoints[vxIdx] - m_wellPathPoints[vxIdx - 1];
segment[2] = 0.0;
*horizontalLengthAlongWellToStartClipPoint += segment.length();
}
vxIdx++;
}
if ( m_measuredDepths.size() > vxIdx )
{
if ( vxIdx == 0 )
{
// For measuredDepth same or lower than first point, use this first point
interpolatedVector = vectorValuesAlongWellPath.at( 0 );
}
else
{
// Do interpolation
double segmentFraction = ( measuredDepth - m_measuredDepths.at( vxIdx - 1 ) ) /
( m_measuredDepths.at( vxIdx ) - m_measuredDepths.at( vxIdx - 1 ) );
cvf::Vec3d segment = m_wellPathPoints[vxIdx] - m_wellPathPoints[vxIdx - 1];
interpolatedVector = ( 1.0 - segmentFraction ) * vectorValuesAlongWellPath[vxIdx - 1] +
segmentFraction * vectorValuesAlongWellPath[vxIdx];
if ( horizontalLengthAlongWellToStartClipPoint )
{
segment[2] = 0.0;
*horizontalLengthAlongWellToStartClipPoint += segment.length() * segmentFraction;
}
}
}
else
{
// Use endpoint if measuredDepth same or higher than last point
interpolatedVector = vectorValuesAlongWellPath.at( vxIdx - 1 );
}
return interpolatedVector;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d
RigWellPath::interpolatedPointAlongWellPath( double measuredDepth,
double* horizontalLengthAlongWellToStartClipPoint /*= nullptr*/ ) const
{
return interpolatedVectorValuesAlongWellPath( m_wellPathPoints, measuredDepth, horizontalLengthAlongWellToStartClipPoint );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RigWellPath::tangentAlongWellPath( double measuredDepth ) const
{
if ( m_measuredDepths.size() < 2u ) return cvf::Vec3d::UNDEFINED;
if ( measuredDepth <= m_measuredDepths.front() )
{
return ( m_wellPathPoints[1] - m_wellPathPoints[0] ).getNormalized();
}
if ( measuredDepth >= m_measuredDepths.back() )
{
auto N = m_measuredDepths.size();
return ( m_wellPathPoints[N - 1] - m_wellPathPoints[N - 2] ).getNormalized();
}
for ( size_t i = 1; i < m_measuredDepths.size(); i++ )
{
cvf::Vec3d point1 = m_wellPathPoints[i - 1];
cvf::Vec3d point2 = m_wellPathPoints[i - 0];
double md1 = m_measuredDepths[i - 1];
double md2 = m_measuredDepths[i];
if ( measuredDepth >= md1 && measuredDepth < md2 )
{
return ( point2 - point1 ).getNormalized();
}
}
return cvf::Vec3d::UNDEFINED;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigWellPath::wellPathAzimuthAngle( const cvf::Vec3d& position ) const
{
size_t closestIndex = cvf::UNDEFINED_SIZE_T;
double closestDistance = cvf::UNDEFINED_DOUBLE;
for ( size_t i = 1; i < m_wellPathPoints.size(); i++ )
{
cvf::Vec3d p1 = m_wellPathPoints[i - 1];
cvf::Vec3d p2 = m_wellPathPoints[i - 0];
double candidateDistance = cvf::GeometryTools::linePointSquareDist( p1, p2, position );
if ( candidateDistance < closestDistance )
{
closestDistance = candidateDistance;
closestIndex = i;
}
}
// For vertical well (x-component of direction = 0) returned angle will be 90.
double azimuthAngleDegrees = 90.0;
if ( closestIndex != cvf::UNDEFINED_DOUBLE )
{
cvf::Vec3d p1;
cvf::Vec3d p2;
if ( closestIndex > 0 )
{
p1 = m_wellPathPoints[closestIndex - 1];
p2 = m_wellPathPoints[closestIndex - 0];
}
else
{
p1 = m_wellPathPoints[closestIndex + 1];
p2 = m_wellPathPoints[closestIndex + 0];
}
cvf::Vec3d direction = p2 - p1;
if ( fabs( direction.y() ) > 1e-5 )
{
double atanValue = direction.x() / direction.y();
double azimuthRadians = atan( atanValue );
azimuthAngleDegrees = cvf::Math::toDegrees( azimuthRadians );
}
}
return azimuthAngleDegrees;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigWellPath::twoClosestPoints( const cvf::Vec3d& position, cvf::Vec3d* p1, cvf::Vec3d* p2 ) const
{
CVF_ASSERT( p1 && p2 );
size_t closestIndex = cvf::UNDEFINED_SIZE_T;
double closestDistance = cvf::UNDEFINED_DOUBLE;
for ( size_t i = 1; i < m_wellPathPoints.size(); i++ )
{
cvf::Vec3d point1 = m_wellPathPoints[i - 1];
cvf::Vec3d point2 = m_wellPathPoints[i - 0];
double candidateDistance = cvf::GeometryTools::linePointSquareDist( point1, point2, position );
if ( candidateDistance < closestDistance )
{
closestDistance = candidateDistance;
closestIndex = i;
}
}
if ( closestIndex != cvf::UNDEFINED_SIZE_T )
{
if ( closestIndex > 0 )
{
*p1 = m_wellPathPoints[closestIndex - 1];
*p2 = m_wellPathPoints[closestIndex - 0];
}
else
{
*p1 = m_wellPathPoints[closestIndex + 1];
*p2 = m_wellPathPoints[closestIndex + 0];
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigWellPath::identicalTubeLength( const RigWellPath& other ) const
{
const double eps = 1.0e-8;
size_t minimumVertexCount = std::min( m_wellPathPoints.size(), other.wellPathPoints().size() );
if ( minimumVertexCount < 2u ) return 0.0;
double identicalLength = 0.0;
if ( ( m_wellPathPoints.front() - other.wellPathPoints().front() ).length() < eps )
{
for ( size_t vIndex = 1; vIndex < minimumVertexCount; ++vIndex )
{
if ( ( m_wellPathPoints[vIndex] - other.wellPathPoints()[vIndex] ).length() < eps )
{
identicalLength = m_measuredDepths[vIndex];
}
else
{
break;
}
}
}
return identicalLength;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<RigWellPath> RigWellPath::commonGeometry( const std::vector<const RigWellPath*>& allGeometries )
{
const double eps = 1.0e-3;
if ( allGeometries.empty() ) return nullptr;
if ( allGeometries.size() == 1u ) return cvf::ref<RigWellPath>( new RigWellPath( *allGeometries.front() ) );
const RigWellPath* firstGeometry = allGeometries.front();
std::vector<cvf::Vec3d> commonWellPathPoints;
std::vector<double> commonMDs;
for ( size_t vIndex = 0u; vIndex < firstGeometry->wellPathPoints().size(); ++vIndex )
{
const cvf::Vec3d& firstGeometryVertex = firstGeometry->wellPathPoints()[vIndex];
bool allMatches = std::all_of( allGeometries.begin() + 1, allGeometries.end(), [=]( const RigWellPath* geometry ) {
if ( geometry->wellPathPoints().size() > vIndex )
{
return ( firstGeometryVertex - geometry->wellPathPoints()[vIndex] ).length() < eps;
}
return false;
} );
if ( allMatches )
{
commonWellPathPoints.push_back( firstGeometryVertex );
commonMDs.push_back( firstGeometry->measuredDepths()[vIndex] );
}
else
{
break;
}
}
return cvf::ref<RigWellPath>( new RigWellPath( commonWellPathPoints, commonMDs ) );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigWellPath::setUniqueStartAndEndIndex( size_t uniqueStartIndex, size_t uniqueEndIndex )
{
if ( m_measuredDepths.empty() ) return;
m_uniqueStartIndex = std::clamp( uniqueStartIndex, (size_t)0u, m_measuredDepths.size() - 1u );
m_uniqueEndIndex = std::clamp( uniqueEndIndex, m_uniqueStartIndex, m_measuredDepths.size() - 1u );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigWellPath::uniqueStartIndex() const
{
return m_uniqueStartIndex;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigWellPath::uniqueEndIndex() const
{
return std::clamp( m_uniqueEndIndex, m_uniqueStartIndex, m_measuredDepths.size() - 1u );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> RigWellPath::uniqueWellPathPoints() const
{
return std::vector<cvf::Vec3d>( m_wellPathPoints.begin() + uniqueStartIndex(),
m_wellPathPoints.begin() + uniqueEndIndex() + 1u );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigWellPath::uniqueMeasuredDepths() const
{
return std::vector<double>( m_measuredDepths.begin() + m_uniqueStartIndex,
m_measuredDepths.begin() + uniqueEndIndex() + 1u );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<std::vector<cvf::Vec3d>, std::vector<double>>
RigWellPath::clippedPointSubset( double startMD, double endMD, double* horizontalLengthAlongWellToStartClipPoint ) const
{
std::pair<std::vector<cvf::Vec3d>, std::vector<double>> pointsAndMDs;
if ( m_measuredDepths.empty() ) return pointsAndMDs;
if ( startMD > endMD ) return pointsAndMDs;
pointsAndMDs.first.push_back( interpolatedPointAlongWellPath( startMD, horizontalLengthAlongWellToStartClipPoint ) );
pointsAndMDs.second.push_back( startMD );
for ( size_t i = 0; i < m_measuredDepths.size(); ++i )
{
double measuredDepth = m_measuredDepths[i];
if ( measuredDepth > startMD && measuredDepth <= endMD )
{
pointsAndMDs.first.push_back( m_wellPathPoints[i] );
pointsAndMDs.second.push_back( measuredDepth );
}
}
pointsAndMDs.first.push_back( interpolatedPointAlongWellPath( endMD ) );
pointsAndMDs.second.push_back( endMD );
return pointsAndMDs;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d>
RigWellPath::wellPathPointsIncludingInterpolatedIntersectionPoint( double intersectionMeasuredDepth ) const
{
std::vector<cvf::Vec3d> points;
if ( m_measuredDepths.empty() ) return points;
cvf::Vec3d interpolatedWellPathPoint = interpolatedPointAlongWellPath( intersectionMeasuredDepth );
for ( size_t i = 0; i < m_measuredDepths.size() - 1; i++ )
{
if ( m_measuredDepths[i] == intersectionMeasuredDepth )
{
points.push_back( m_wellPathPoints[i] );
}
else if ( m_measuredDepths[i] < intersectionMeasuredDepth )
{
points.push_back( m_wellPathPoints[i] );
if ( m_measuredDepths[i + 1] > intersectionMeasuredDepth )
{
points.push_back( interpolatedWellPathPoint );
}
}
else if ( m_measuredDepths[i] > intersectionMeasuredDepth )
{
if ( i == 0 )
{
points.push_back( interpolatedWellPathPoint );
}
else
{
points.push_back( m_wellPathPoints[i] );
}
}
}
points.push_back( m_wellPathPoints.back() );
return points;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigWellPath::isAnyPointInsideBoundingBox( const std::vector<cvf::Vec3d>& points, const cvf::BoundingBox& boundingBox )
{
for ( const cvf::Vec3d& point : points )
{
if ( boundingBox.contains( point ) ) return true;
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> RigWellPath::clipPolylineStartAboveZ( const std::vector<cvf::Vec3d>& polyLine,
double maxZ,
double* horizontalLengthAlongWellToClipPoint,
size_t* indexToFirstVisibleSegment )
{
CVF_ASSERT( horizontalLengthAlongWellToClipPoint );
CVF_ASSERT( indexToFirstVisibleSegment );
// Find first visible point, and accumulate distance along wellpath
*horizontalLengthAlongWellToClipPoint = 0.0;
*indexToFirstVisibleSegment = cvf::UNDEFINED_SIZE_T;
size_t firstVisiblePointIndex = cvf::UNDEFINED_SIZE_T;
for ( size_t vxIdx = 0; vxIdx < polyLine.size(); ++vxIdx )
{
if ( polyLine[vxIdx].z() > maxZ )
{
if ( vxIdx > 0 )
{
cvf::Vec3d segment = polyLine[vxIdx] - polyLine[vxIdx - 1];
segment[2] = 0.0;
*horizontalLengthAlongWellToClipPoint += segment.length();
}
}
else
{
firstVisiblePointIndex = vxIdx;
break;
}
}
// Clip line, and add vx to the start of the clipped result
std::vector<cvf::Vec3d> clippedPolyLine;
if ( firstVisiblePointIndex == cvf::UNDEFINED_SIZE_T )
{
return clippedPolyLine;
}
if ( firstVisiblePointIndex > 0 )
{
cvf::Plane topPlane;
topPlane.setFromPointAndNormal( { 0.0, 0.0, maxZ }, cvf::Vec3d::Z_AXIS );
cvf::Vec3d intersection;
if ( topPlane.intersect( polyLine[firstVisiblePointIndex - 1], polyLine[firstVisiblePointIndex], &intersection ) )
{
cvf::Vec3d segment = intersection - polyLine[firstVisiblePointIndex - 1];
segment[2] = 0.0;
*horizontalLengthAlongWellToClipPoint += segment.length();
clippedPolyLine.push_back( intersection );
}
*indexToFirstVisibleSegment = firstVisiblePointIndex - 1;
}
else
{
*indexToFirstVisibleSegment = 0;
}
// Add the rest of the polyline
for ( size_t vxIdx = firstVisiblePointIndex; vxIdx < polyLine.size(); ++vxIdx )
{
clippedPolyLine.push_back( polyLine[vxIdx] );
}
return clippedPolyLine;
}