ResInsight/ApplicationCode/ModelVisualization/RivCellEdgeEffectGenerator.cpp
2014-08-14 10:56:33 +02:00

441 lines
17 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RiaStdInclude.h"
#include "RivCellEdgeEffectGenerator.h"
#include "cvfBase.h"
#include "cvfAssert.h"
#include "cvfDrawableGeo.h"
#include "cvfVertexAttribute.h"
#include "cvfStructGridGeometryGenerator.h"
#include "cvfScalarMapperUniformLevels.h"
#include "cvfShaderProgramGenerator.h"
#include "cvfShaderSourceProvider.h"
#include "cvfqtUtils.h"
#include "cvfShaderProgram.h"
#include "cvfRenderStateCullFace.h"
#include "cvfTextureImage.h"
#include "cvfTexture.h"
#include "cvfSampler.h"
#include "cvfScalarMapper.h"
#include "cafEffectGenerator.h"
#include <vector>
#include <QFile>
#include <QTextStream>
#include "RimCase.h"
#include "RimReservoirView.h"
#include "RimResultSlot.h"
#include "RigGridBase.h"
#include "RigMainGrid.h"
#include "RigCaseCellResultsData.h"
#include "RigCaseData.h"
#include "RigActiveCellInfo.h"
#include "RimReservoirCellResultsStorage.h"
#include "cafPdmFieldCvfMat4d.h"
#include "cafPdmFieldCvfColor.h"
#include "RimResultSlot.h"
#include "RimCellEdgeResultSlot.h"
#include "RimCellRangeFilterCollection.h"
#include "RimCellPropertyFilterCollection.h"
#include "RimWellCollection.h"
#include "Rim3dOverlayInfoConfig.h"
#include "cvfStructGridScalarDataAccess.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivCellEdgeGeometryGenerator::addCellEdgeResultsToDrawableGeo(
size_t timeStepIndex,
RimResultSlot* cellResultSlot,
RimCellEdgeResultSlot* cellEdgeResultSlot,
cvf::StructGridGeometryGenerator* generator,
cvf::DrawableGeo* geo,
size_t gridIndex,
float opacityLevel)
{
const cvf::StructGridQuadToCellFaceMapper* quadToCellFace = generator->quadToCellFaceMapper();
size_t vertexCount = geo->vertexArray()->size();
size_t quadCount = vertexCount / 4;
cvf::ref<cvf::Vec2fArray> localCoords = new cvf::Vec2fArray;
localCoords->resize(vertexCount);
cvf::ref<cvf::IntArray> faceIndexArray = new cvf::IntArray;
faceIndexArray->resize(vertexCount);
cvf::ref<cvf::FloatArray> cellColorTextureCoordArray = new cvf::FloatArray;
cellColorTextureCoordArray->resize(vertexCount);
// Build six cell face color arrays
cvf::Collection<cvf::FloatArray> cellEdgeColorTextureCoordsArrays;
size_t idx;
for (idx = 0; idx < 6; idx++)
{
cvf::ref<cvf::FloatArray> colorArray = new cvf::FloatArray;
colorArray->resize(vertexCount);
cellEdgeColorTextureCoordsArrays.push_back(colorArray.p());
}
cvf::ScalarMapper* cellResultScalarMapper = cellResultSlot->legendConfig()->scalarMapper();
cvf::ScalarMapper* edgeResultScalarMapper = cellEdgeResultSlot->legendConfig()->scalarMapper();
const RigGridBase* grid = dynamic_cast<const RigGridBase*>(generator->activeGrid());
CVF_ASSERT(grid != NULL);
RigCaseData* eclipseCase = cellResultSlot->reservoirView()->eclipseCase()->reservoirData();
CVF_ASSERT(eclipseCase != NULL);
cvf::ref<cvf::StructGridScalarDataAccess> cellCenterDataAccessObject = NULL;
if (cellResultSlot->hasResult())
{
if (!cellResultSlot->hasDynamicResult())
{
// Static result values are located at time step 0
timeStepIndex = 0;
}
RifReaderInterface::PorosityModelResultType porosityModel = RigCaseCellResultsData::convertFromProjectModelPorosityModel(cellResultSlot->porosityModel());
cellCenterDataAccessObject = eclipseCase->TO_BE_DELETED_resultAccessor(grid, porosityModel, timeStepIndex, cellResultSlot->gridScalarIndex());
}
CVF_ASSERT(cellEdgeResultSlot->hasResult());
size_t resultIndices[6];
cellEdgeResultSlot->gridScalarIndices(resultIndices);
cvf::Collection<cvf::StructGridScalarDataAccess> cellEdgeDataAccessObjects;
size_t cubeFaceIdx;
for (cubeFaceIdx = 0; cubeFaceIdx < 6; cubeFaceIdx++)
{
cvf::ref<cvf::StructGridScalarDataAccess> daObj;
if (resultIndices[cubeFaceIdx] != cvf::UNDEFINED_SIZE_T)
{
// Assuming static values to be mapped onto cell edge, always using time step zero
// TODO: Now hardcoded matrix results, should it be possible to use fracture results?
daObj = eclipseCase->TO_BE_DELETED_resultAccessor(grid, RifReaderInterface::MATRIX_RESULTS, 0, resultIndices[cubeFaceIdx]);
}
cellEdgeDataAccessObjects.push_back(daObj.p());
}
double ignoredScalarValue = cellEdgeResultSlot->ignoredScalarValue();
const std::vector<cvf::ubyte>* isWellPipeVisible = NULL;
cvf::ref<cvf::UIntArray> gridCellToWellindexMap;
if (opacityLevel < 1.0f)
{
isWellPipeVisible = &(cellResultSlot->reservoirView()->wellCollection()->isWellPipesVisible(timeStepIndex));
gridCellToWellindexMap = eclipseCase->gridCellToWellIndex( gridIndex );
}
#pragma omp parallel for
for (int quadIdx = 0; quadIdx < static_cast<int>(quadCount); quadIdx++)
{
localCoords->set(quadIdx * 4 + 0, cvf::Vec2f(0, 0));
localCoords->set(quadIdx * 4 + 1, cvf::Vec2f(1, 0));
localCoords->set(quadIdx * 4 + 2, cvf::Vec2f(1, 1));
localCoords->set(quadIdx * 4 + 3, cvf::Vec2f(0, 1));
faceIndexArray->set(quadIdx * 4 + 0, quadToCellFace->cellFace(quadIdx) );
faceIndexArray->set(quadIdx * 4 + 1, quadToCellFace->cellFace(quadIdx) );
faceIndexArray->set(quadIdx * 4 + 2, quadToCellFace->cellFace(quadIdx) );
faceIndexArray->set(quadIdx * 4 + 3, quadToCellFace->cellFace(quadIdx) );
float cellColorTextureCoord = 0.5f; // If no results exists, the texture will have a special color
size_t cellIndex = quadToCellFace->cellIndex(quadIdx);
{
double scalarValue = HUGE_VAL;
if (cellCenterDataAccessObject.notNull())
{
scalarValue = cellCenterDataAccessObject->cellScalar(cellIndex);
}
if (scalarValue != HUGE_VAL)
{
cellColorTextureCoord = cellResultScalarMapper->mapToTextureCoord(scalarValue)[0];
// If we are dealing with wellcells, the default is transparent.
// we need to make cells opaque if there are no wellpipe through them.
if (opacityLevel < 1.0f)
{
cvf::uint wellIndex = gridCellToWellindexMap->get(cellIndex);
if (wellIndex != cvf::UNDEFINED_UINT)
{
if ( !(*isWellPipeVisible)[wellIndex])
{
cellColorTextureCoord += 2.0f; // The shader must interpret values in the range 2-3 as "opaque"
}
}
}
}
else
{
cellColorTextureCoord = -1.0f; // Undefined texture coord. Shader handles this.
}
}
cellColorTextureCoordArray->set(quadIdx * 4 + 0, cellColorTextureCoord);
cellColorTextureCoordArray->set(quadIdx * 4 + 1, cellColorTextureCoord);
cellColorTextureCoordArray->set(quadIdx * 4 + 2, cellColorTextureCoord);
cellColorTextureCoordArray->set(quadIdx * 4 + 3, cellColorTextureCoord);
size_t cubeFaceIdx;
float edgeColor;
for (cubeFaceIdx = 0; cubeFaceIdx < 6; cubeFaceIdx++)
{
edgeColor = -1.0f; // Undefined texture coord. Shader handles this.
double scalarValue = HUGE_VAL;
if (cellEdgeDataAccessObjects[cubeFaceIdx].notNull())
{
scalarValue = cellEdgeDataAccessObjects[cubeFaceIdx]->cellScalar(cellIndex);
}
if (scalarValue != HUGE_VAL && scalarValue != ignoredScalarValue)
{
edgeColor = edgeResultScalarMapper->mapToTextureCoord(scalarValue)[0];
}
cvf::FloatArray* colArr = cellEdgeColorTextureCoordsArrays.at(cubeFaceIdx);
colArr->set(quadIdx * 4 + 0, edgeColor);
colArr->set(quadIdx * 4 + 1, edgeColor);
colArr->set(quadIdx * 4 + 2, edgeColor);
colArr->set(quadIdx * 4 + 3, edgeColor);
}
}
geo->setVertexAttribute(new cvf::Vec2fVertexAttribute("a_localCoord", localCoords.p()));
geo->setVertexAttribute(new cvf::FloatVertexAttribute("a_colorCell", cellColorTextureCoordArray.p()));
cvf::ref<cvf::IntVertexAttributeDirect> faceIntAttribute = new cvf::IntVertexAttributeDirect("a_face", faceIndexArray.p());
//faceIntAttribute->setIntegerTypeConversion(cvf::VertexAttribute::DIRECT_FLOAT);
geo->setVertexAttribute(faceIntAttribute.p());
geo->setVertexAttribute(new cvf::FloatVertexAttribute("a_colorPosI", cellEdgeColorTextureCoordsArrays.at(0)));
geo->setVertexAttribute(new cvf::FloatVertexAttribute("a_colorNegI", cellEdgeColorTextureCoordsArrays.at(1)));
geo->setVertexAttribute(new cvf::FloatVertexAttribute("a_colorPosJ", cellEdgeColorTextureCoordsArrays.at(2)));
geo->setVertexAttribute(new cvf::FloatVertexAttribute("a_colorNegJ", cellEdgeColorTextureCoordsArrays.at(3)));
geo->setVertexAttribute(new cvf::FloatVertexAttribute("a_colorPosK", cellEdgeColorTextureCoordsArrays.at(4)));
geo->setVertexAttribute(new cvf::FloatVertexAttribute("a_colorNegK", cellEdgeColorTextureCoordsArrays.at(5)));
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
CellEdgeEffectGenerator::CellEdgeEffectGenerator(const cvf::ScalarMapper* edgeScalarMapper, const cvf::ScalarMapper* cellScalarMapper)
{
CVF_ASSERT(edgeScalarMapper != NULL);
m_cellScalarMapper = cellScalarMapper;
m_edgeScalarMapper = edgeScalarMapper;
m_cullBackfaces = false;
m_opacityLevel = 1.0f;
m_defaultCellColor = cvf::Color3f(cvf::Color3::WHITE);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool CellEdgeEffectGenerator::isEqual(const EffectGenerator* other) const
{
const CellEdgeEffectGenerator* otherCellFaceEffectGenerator = dynamic_cast<const CellEdgeEffectGenerator*>(other);
if (otherCellFaceEffectGenerator
&& m_cellScalarMapper.p() == otherCellFaceEffectGenerator->m_cellScalarMapper.p()
&& m_edgeScalarMapper.p() == otherCellFaceEffectGenerator->m_edgeScalarMapper.p()
&& m_cullBackfaces == otherCellFaceEffectGenerator->m_cullBackfaces
&& m_opacityLevel == otherCellFaceEffectGenerator->m_opacityLevel
&& m_undefinedColor == otherCellFaceEffectGenerator->m_undefinedColor
&& m_defaultCellColor == otherCellFaceEffectGenerator->m_defaultCellColor
)
{
cvf::ref<cvf::TextureImage> texImg2 = new cvf::TextureImage;
if (otherCellFaceEffectGenerator->m_edgeScalarMapper.notNull())
{
otherCellFaceEffectGenerator->m_edgeScalarMapper->updateTexture(texImg2.p());
if (!caf::ScalarMapperEffectGenerator::isImagesEqual(m_edgeTextureImage.p(), texImg2.p())) return false;
}
if (otherCellFaceEffectGenerator->m_cellScalarMapper.notNull())
{
otherCellFaceEffectGenerator->m_cellScalarMapper->updateTexture(texImg2.p());
if (!caf::ScalarMapperEffectGenerator::isImagesEqual(m_cellTextureImage.p(), texImg2.p())) return false;
}
return true;
}
else
{
return false;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
caf::EffectGenerator* CellEdgeEffectGenerator::copy() const
{
CellEdgeEffectGenerator * newEffect = new CellEdgeEffectGenerator(m_edgeScalarMapper.p(), m_cellScalarMapper.p());
newEffect->m_edgeTextureImage = m_edgeTextureImage;
newEffect->m_cellTextureImage = m_cellTextureImage;
newEffect->setOpacityLevel(m_opacityLevel);
newEffect->setCullBackfaces(m_cullBackfaces);
newEffect->setUndefinedColor(m_undefinedColor);
newEffect->setDefaultCellColor(m_defaultCellColor);
return newEffect;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void CellEdgeEffectGenerator::updateForShaderBasedRendering(cvf::Effect* effect) const
{
cvf::ref<cvf::Effect> eff = effect;
// Set up shader program
cvf::ShaderProgramGenerator shaderGen("CellEdgeFaceShaderProgramGenerator", cvf::ShaderSourceProvider::instance());
{
QFile data(":/Shader/fs_CellFace.glsl");
if (data.open(QFile::ReadOnly))
{
QTextStream in(&data);
QString data = in.readAll();
cvf::String cvfString = cvfqt::Utils::toString(data);
shaderGen.addFragmentCode(cvfString);
}
}
{
QFile data(":/Shader/vs_CellFace.glsl");
if (data.open(QFile::ReadOnly))
{
QTextStream in(&data);
QString data = in.readAll();
cvf::String cvfString = cvfqt::Utils::toString(data);
shaderGen.addVertexCode(cvfString);
}
}
shaderGen.addFragmentCode(caf::CommonShaderSources::light_AmbientDiffuse());
shaderGen.addFragmentCode(cvf::ShaderSourceRepository::fs_Standard);
cvf::ref<cvf::ShaderProgram> prog = shaderGen.generate();
eff->setShaderProgram(prog.p());
// Set up textures
m_edgeTextureImage = new cvf::TextureImage;
m_cellTextureImage = new cvf::TextureImage;
cvf::ref<cvf::TextureImage> modifiedCellTextImage;
m_edgeScalarMapper->updateTexture(m_edgeTextureImage.p());
if (m_cellScalarMapper.notNull())
{
m_cellScalarMapper->updateTexture(m_cellTextureImage.p());
modifiedCellTextImage = caf::ScalarMapperEffectGenerator::addAlphaAndUndefStripes(m_cellTextureImage.p(), m_undefinedColor, m_opacityLevel);
}
else
{
modifiedCellTextImage = new cvf::TextureImage;
modifiedCellTextImage->allocate(2,1);
modifiedCellTextImage->fill(cvf::Color4ub(cvf::Color4f(m_defaultCellColor, m_opacityLevel)));
}
cvf::ref<cvf::Texture> edgeTexture = new cvf::Texture(m_edgeTextureImage.p());
cvf::ref<cvf::Texture> cellTexture = new cvf::Texture(modifiedCellTextImage.p());
cvf::ref<cvf::Sampler> sampler = new cvf::Sampler;
sampler->setWrapMode(cvf::Sampler::CLAMP_TO_EDGE);
sampler->setMinFilter(cvf::Sampler::NEAREST);
sampler->setMagFilter(cvf::Sampler::NEAREST);
cvf::ref<cvf::RenderStateTextureBindings> texBind = new cvf::RenderStateTextureBindings;
texBind->addBinding(edgeTexture.p(), sampler.p(), "u_edgeTexture2D");
texBind->addBinding(cellTexture.p(), sampler.p(), "u_cellTexture2D");
eff->setRenderState(texBind.p());
// Polygon offset
if (true)
{
cvf::ref<cvf::RenderStatePolygonOffset> polyOffset = new cvf::RenderStatePolygonOffset;
polyOffset->configurePolygonPositiveOffset();
eff->setRenderState(polyOffset.p());
}
// Simple transparency
if (m_opacityLevel < 1.0f)
{
cvf::ref<cvf::RenderStateBlending> blender = new cvf::RenderStateBlending;
blender->configureTransparencyBlending();
eff->setRenderState(blender.p());
}
// Backface culling
if (m_cullBackfaces)
{
cvf::ref<cvf::RenderStateCullFace> faceCulling = new cvf::RenderStateCullFace;
eff->setRenderState(faceCulling.p());
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void CellEdgeEffectGenerator::updateForFixedFunctionRendering(cvf::Effect* effect) const
{
caf::SurfaceEffectGenerator surfaceGen(cvf::Color4f(cvf::Color3f::CRIMSON), caf::PO_1);
surfaceGen.updateEffect(effect);
}