ResInsight/ApplicationCode/ModelVisualization/RivFaultPartMgr.cpp
2014-08-14 10:56:39 +02:00

740 lines
26 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA, Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RivFaultPartMgr.h"
#include "cvfPart.h"
#include "cafEffectGenerator.h"
#include "cvfStructGrid.h"
#include "cvfDrawableGeo.h"
#include "cvfModelBasicList.h"
#include "RivCellEdgeEffectGenerator.h"
#include "RimReservoirView.h"
#include "RimResultSlot.h"
#include "RimCellEdgeResultSlot.h"
#include "RigCaseCellResultsData.h"
#include "RigCaseData.h"
#include "RiaApplication.h"
#include "RiaPreferences.h"
#include "RigResultAccessor.h"
#include "RimCase.h"
#include "RimWellCollection.h"
#include "cafPdmFieldCvfMat4d.h"
#include "cafPdmFieldCvfColor.h"
#include "RimCellRangeFilterCollection.h"
#include "RimCellPropertyFilterCollection.h"
#include "Rim3dOverlayInfoConfig.h"
#include "RimReservoirCellResultsStorage.h"
#include "cvfDrawableText.h"
#include "cvfqtUtils.h"
#include "cvfPrimitiveSetIndexedUInt.h"
#include "cvfPrimitiveSetDirect.h"
#include "RivGridPartMgr.h"
#include "cvfRenderStateDepth.h"
#include "RivSourceInfo.h"
#include "RimFaultCollection.h"
#include "RivTextureCoordsCreator.h"
#include "RivResultToTextureMapper.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivFaultPartMgr::RivFaultPartMgr(const RigGridBase* grid, const RimFaultCollection* rimFaultCollection, const RimFault* rimFault)
: m_grid(grid),
m_rimFaultCollection(rimFaultCollection),
m_rimFault(rimFault),
m_opacityLevel(1.0f),
m_defaultColor(cvf::Color3::WHITE)
{
cvf::ref< cvf::Array<size_t> > connIdxes = new cvf::Array<size_t>;
connIdxes->assign(rimFault->faultGeometry()->connectionIndices());
m_nativeFaultGenerator = new RivFaultGeometryGenerator(grid, rimFault->faultGeometry(), true);
m_oppositeFaultGenerator = new RivFaultGeometryGenerator(grid, rimFault->faultGeometry(), false);
m_NNCGenerator = new RivNNCGeometryGenerator(grid->mainGrid()->nncData(), grid->mainGrid()->displayModelOffset(), connIdxes.p());
m_nativeFaultFacesTextureCoords = new cvf::Vec2fArray;
m_oppositeFaultFacesTextureCoords = new cvf::Vec2fArray;
m_NNCTextureCoords = new cvf::Vec2fArray;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::setCellVisibility(cvf::UByteArray* cellVisibilities)
{
m_nativeFaultGenerator->setCellVisibility(cellVisibilities);
m_oppositeFaultGenerator->setCellVisibility(cellVisibilities);
m_NNCGenerator->setCellVisibility(cellVisibilities, m_grid.p());
generatePartGeometry();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::applySingleColorEffect()
{
m_defaultColor = m_rimFault->faultColor();
this->updatePartEffect();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::updateCellResultColor(size_t timeStepIndex, RimResultSlot* cellResultSlot)
{
CVF_ASSERT(cellResultSlot);
updateNNCColors(cellResultSlot);
size_t scalarSetIndex = cellResultSlot->gridScalarIndex();
const cvf::ScalarMapper* mapper = cellResultSlot->legendConfig()->scalarMapper();
// If the result is static, only read that.
size_t resTimeStepIdx = timeStepIndex;
if (cellResultSlot->hasStaticResult()) resTimeStepIdx = 0;
RifReaderInterface::PorosityModelResultType porosityModel = RigCaseCellResultsData::convertFromProjectModelPorosityModel(cellResultSlot->porosityModel());
RigCaseData* eclipseCase = cellResultSlot->reservoirView()->eclipseCase()->reservoirData();
// Faults
if (m_nativeFaultFaces.notNull())
{
cvf::ref<cvf::Color3ubArray> surfaceFacesColorArray;
if (cellResultSlot->isTernarySaturationSelected())
{
surfaceFacesColorArray = new cvf::Color3ubArray;
RivTransmissibilityColorMapper::updateTernarySaturationColorArray(timeStepIndex, cellResultSlot, m_grid.p(),
surfaceFacesColorArray.p(), m_nativeFaultGenerator->cellFromQuadMapper());
}
else
{
RivTextureCoordsCreator texturer(cellResultSlot,
timeStepIndex,
m_grid->gridIndex(),
m_nativeFaultGenerator->cellFromQuadMapper());
if (!texturer.isValid())
{
return;
}
texturer.createTextureCoords(m_nativeFaultFacesTextureCoords.p());
}
cvf::DrawableGeo* dg = dynamic_cast<cvf::DrawableGeo*>(m_nativeFaultFaces->drawable());
if (surfaceFacesColorArray.notNull())
{
if (dg)
{
dg->setColorArray(surfaceFacesColorArray.p());
}
cvf::ref<cvf::Effect> perVertexColorEffect = RivGridPartMgr::createPerVertexColoringEffect(m_opacityLevel);
m_nativeFaultFaces->setEffect(perVertexColorEffect.p());
m_nativeFaultFaces->setPriority(100);
}
else
{
if (dg) dg->setTextureCoordArray(m_nativeFaultFacesTextureCoords.p());
cvf::ref<cvf::Effect> scalarEffect = cellResultEffect(mapper, caf::PO_1);
m_nativeFaultFaces->setEffect(scalarEffect.p());
}
}
if (m_oppositeFaultFaces.notNull())
{
cvf::ref<cvf::Color3ubArray> surfaceFacesColorArray;
if (cellResultSlot->isTernarySaturationSelected())
{
surfaceFacesColorArray = new cvf::Color3ubArray;
RivTransmissibilityColorMapper::updateTernarySaturationColorArray(timeStepIndex, cellResultSlot, m_grid.p(), surfaceFacesColorArray.p(), m_oppositeFaultGenerator->cellFromQuadMapper());
}
else
{
RivTextureCoordsCreator texturer(cellResultSlot,
timeStepIndex,
m_grid->gridIndex(),
m_oppositeFaultGenerator->cellFromQuadMapper());
if (!texturer.isValid())
{
return;
}
texturer.createTextureCoords(m_oppositeFaultFacesTextureCoords.p());
}
cvf::DrawableGeo* dg = dynamic_cast<cvf::DrawableGeo*>(m_oppositeFaultFaces->drawable());
if (surfaceFacesColorArray.notNull())
{
if (dg)
{
dg->setColorArray(surfaceFacesColorArray.p());
}
cvf::ref<cvf::Effect> perVertexColorEffect = RivGridPartMgr::createPerVertexColoringEffect(m_opacityLevel);
m_oppositeFaultFaces->setEffect(perVertexColorEffect.p());
m_oppositeFaultFaces->setPriority(100);
}
else
{
if (dg) dg->setTextureCoordArray(m_oppositeFaultFacesTextureCoords.p());
// Use a different offset than native fault faces to avoid z-fighting
cvf::ref<cvf::Effect> scalarEffect = cellResultEffect(mapper, caf::PO_2);
m_oppositeFaultFaces->setEffect(scalarEffect.p());
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::updateCellEdgeResultColor(size_t timeStepIndex, RimResultSlot* cellResultSlot, RimCellEdgeResultSlot* cellEdgeResultSlot)
{
}
const int priFaultGeo = 1;
const int priNncGeo = 2;
const int priMesh = 3;
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::generatePartGeometry()
{
bool useBufferObjects = true;
// Surface geometry
{
cvf::ref<cvf::DrawableGeo> geo = m_nativeFaultGenerator->generateSurface();
if (geo.notNull())
{
geo->computeNormals();
if (useBufferObjects)
{
geo->setRenderMode(cvf::DrawableGeo::BUFFER_OBJECT);
}
cvf::ref<cvf::Part> part = new cvf::Part;
part->setName("Grid " + cvf::String(static_cast<int>(m_grid->gridIndex())));
part->setId(m_grid->gridIndex()); // !! For now, use grid index as part ID (needed for pick info)
part->setDrawable(geo.p());
// Set mapping from triangle face index to cell index
cvf::ref<RivSourceInfo> si = new RivSourceInfo;
si->m_cellFaceFromTriangleMapper = m_nativeFaultGenerator->cellFromTriangleMapper();
part->setSourceInfo(si.p());
part->updateBoundingBox();
part->setEnableMask(faultBit);
part->setPriority(priFaultGeo);
m_nativeFaultFaces = part;
}
}
// Mesh geometry
{
cvf::ref<cvf::DrawableGeo> geoMesh = m_nativeFaultGenerator->createMeshDrawable();
if (geoMesh.notNull())
{
if (useBufferObjects)
{
geoMesh->setRenderMode(cvf::DrawableGeo::BUFFER_OBJECT);
}
cvf::ref<cvf::Part> part = new cvf::Part;
part->setName("Grid mesh" + cvf::String(static_cast<int>(m_grid->gridIndex())));
part->setDrawable(geoMesh.p());
part->updateBoundingBox();
part->setEnableMask(meshFaultBit);
part->setPriority(priMesh);
m_nativeFaultGridLines = part;
}
}
// Surface geometry
{
cvf::ref<cvf::DrawableGeo> geo = m_oppositeFaultGenerator->generateSurface();
if (geo.notNull())
{
geo->computeNormals();
if (useBufferObjects)
{
geo->setRenderMode(cvf::DrawableGeo::BUFFER_OBJECT);
}
cvf::ref<cvf::Part> part = new cvf::Part;
part->setName("Grid " + cvf::String(static_cast<int>(m_grid->gridIndex())));
part->setId(m_grid->gridIndex()); // !! For now, use grid index as part ID (needed for pick info)
part->setDrawable(geo.p());
// Set mapping from triangle face index to cell index
cvf::ref<RivSourceInfo> si = new RivSourceInfo;
si->m_cellFaceFromTriangleMapper = m_oppositeFaultGenerator->cellFromTriangleMapper();
part->setSourceInfo(si.p());
part->updateBoundingBox();
part->setEnableMask(faultBit);
part->setPriority(priFaultGeo);
m_oppositeFaultFaces = part;
}
}
// Mesh geometry
{
cvf::ref<cvf::DrawableGeo> geoMesh = m_oppositeFaultGenerator->createMeshDrawable();
if (geoMesh.notNull())
{
if (useBufferObjects)
{
geoMesh->setRenderMode(cvf::DrawableGeo::BUFFER_OBJECT);
}
cvf::ref<cvf::Part> part = new cvf::Part;
part->setName("Grid mesh" + cvf::String(static_cast<int>(m_grid->gridIndex())));
part->setDrawable(geoMesh.p());
part->updateBoundingBox();
part->setEnableMask(meshFaultBit);
part->setPriority(priMesh);
m_oppositeFaultGridLines = part;
}
}
{
cvf::ref<cvf::DrawableGeo> geo = m_NNCGenerator->generateSurface();
if (geo.notNull())
{
geo->computeNormals();
if (useBufferObjects)
{
geo->setRenderMode(cvf::DrawableGeo::BUFFER_OBJECT);
}
cvf::ref<cvf::Part> part = new cvf::Part;
part->setName("NNC in Fault. Grid " + cvf::String(static_cast<int>(m_grid->gridIndex())));
part->setId(m_grid->gridIndex()); // !! For now, use grid index as part ID (needed for pick info)
part->setDrawable(geo.p());
// Set mapping from triangle face index to cell index
cvf::ref<RivSourceInfo> si = new RivSourceInfo;
si->m_NNCIndices = m_NNCGenerator->triangleToNNCIndex().p();
part->setSourceInfo(si.p());
part->updateBoundingBox();
part->setEnableMask(faultBit);
part->setPriority(priNncGeo);
m_NNCFaces = part;
}
}
createLabelWithAnchorLine(m_nativeFaultFaces.p());
updatePartEffect();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::updatePartEffect()
{
// Set default effect
caf::SurfaceEffectGenerator geometryEffgen(m_defaultColor, caf::PO_1);
geometryEffgen.setCullBackfaces(faceCullingMode());
cvf::ref<cvf::Effect> geometryOnlyEffect = geometryEffgen.generateEffect();
if (m_nativeFaultFaces.notNull())
{
m_nativeFaultFaces->setEffect(geometryOnlyEffect.p());
}
if (m_oppositeFaultFaces.notNull())
{
m_oppositeFaultFaces->setEffect(geometryOnlyEffect.p());
}
updateNNCColors(NULL);
// Update mesh colors as well, in case of change
RiaPreferences* prefs = RiaApplication::instance()->preferences();
cvf::ref<cvf::Effect> eff;
caf::MeshEffectGenerator faultEffGen(prefs->defaultFaultGridLineColors());
eff = faultEffGen.generateEffect();
if (m_nativeFaultGridLines.notNull())
{
m_nativeFaultGridLines->setEffect(eff.p());
}
if (m_oppositeFaultGridLines.notNull())
{
m_oppositeFaultGridLines->setEffect(eff.p());
}
if (m_opacityLevel < 1.0f)
{
// Set priority to make sure this transparent geometry are rendered last
if (m_nativeFaultFaces.notNull()) m_nativeFaultFaces->setPriority(100 + priFaultGeo);
if (m_oppositeFaultFaces.notNull()) m_oppositeFaultFaces->setPriority(100 + priFaultGeo);
if (m_NNCFaces.notNull()) m_NNCFaces->setPriority(100 + priNncGeo);
if (m_nativeFaultGridLines.notNull())
{
m_nativeFaultGridLines->setPriority(100 + priMesh);
}
if (m_oppositeFaultGridLines.notNull())
{
m_oppositeFaultGridLines->setPriority(100 + priMesh);
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::createLabelWithAnchorLine(const cvf::Part* part)
{
m_faultLabelPart = NULL;
m_faultLabelLinePart = NULL;
if (!part) return;
cvf::BoundingBox bb = part->boundingBox();
cvf::Vec3d bbTopCenter = bb.center();
bbTopCenter.z() = bb.max().z();
const cvf::DrawableGeo* geo = dynamic_cast<const cvf::DrawableGeo*>(part->drawable());
// Find closest vertex to top of bounding box.
// Will be recomputed when filter changes, to make sure the label is always visible
// for any filter combination
cvf::Vec3f faultVertexToAttachLabel = findClosestVertex(cvf::Vec3f(bbTopCenter), geo->vertexArray());
cvf::Vec3f labelPosition = faultVertexToAttachLabel;
labelPosition.z() += bb.extent().z() / 2;
// Fault label
{
cvf::Font* standardFont = RiaApplication::instance()->standardFont();
cvf::ref<cvf::DrawableText> drawableText = new cvf::DrawableText;
drawableText->setFont(standardFont);
drawableText->setCheckPosVisible(false);
drawableText->setDrawBorder(false);
drawableText->setDrawBackground(false);
drawableText->setVerticalAlignment(cvf::TextDrawer::CENTER);
cvf::Color3f defWellLabelColor = RiaApplication::instance()->preferences()->defaultWellLabelColor();
{
std::vector<RimFaultCollection*> parentObjects;
m_rimFault->parentObjectsOfType(parentObjects);
if (parentObjects.size() > 0)
{
defWellLabelColor = parentObjects[0]->faultLabelColor();;
}
}
drawableText->setTextColor(defWellLabelColor);
cvf::String cvfString = cvfqt::Utils::toString(m_rimFault->name());
cvf::Vec3f textCoord(labelPosition);
double characteristicCellSize = bb.extent().z() / 20;
textCoord.z() += characteristicCellSize;
drawableText->addText(cvfString, textCoord);
cvf::ref<cvf::Part> part = new cvf::Part;
part->setName("RivFaultPart : text " + cvfString);
part->setDrawable(drawableText.p());
cvf::ref<cvf::Effect> eff = new cvf::Effect;
part->setEffect(eff.p());
part->setPriority(1000);
m_faultLabelPart = part;
}
// Line from fault geometry to label
{
cvf::ref<cvf::Vec3fArray> vertices = new cvf::Vec3fArray;
vertices->reserve(2);
vertices->add(faultVertexToAttachLabel);
vertices->add(labelPosition);
cvf::ref<cvf::DrawableGeo> geo = new cvf::DrawableGeo;
geo->setVertexArray(vertices.p());
cvf::ref<cvf::PrimitiveSetDirect> primSet = new cvf::PrimitiveSetDirect(cvf::PT_LINES);
primSet->setStartIndex(0);
primSet->setIndexCount(vertices->size());
geo->addPrimitiveSet(primSet.p());
m_faultLabelLinePart = new cvf::Part;
m_faultLabelLinePart->setName("Anchor line for label" + cvf::String(static_cast<int>(m_grid->gridIndex())));
m_faultLabelLinePart->setDrawable(geo.p());
m_faultLabelLinePart->updateBoundingBox();
caf::MeshEffectGenerator gen(m_rimFault->faultColor());
cvf::ref<cvf::Effect> eff = gen.generateEffect();
m_faultLabelLinePart->setEffect(eff.p());
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3f RivFaultPartMgr::findClosestVertex(const cvf::Vec3f& point, const cvf::Vec3fArray* vertices)
{
CVF_ASSERT(vertices);
if (!vertices) return cvf::Vec3f::UNDEFINED;
float closestDiff(HUGE_VAL);
size_t closestIndex = cvf::UNDEFINED_SIZE_T;
for (size_t i = 0; i < vertices->size(); i++)
{
float diff = point.pointDistance(vertices->get(i));
if (diff < closestDiff)
{
closestDiff = diff;
closestIndex = i;
}
}
if (closestIndex != cvf::UNDEFINED_SIZE_T)
{
return vertices->get(closestIndex);
}
else
{
return cvf::Vec3f::UNDEFINED;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::appendNativeFaultFacesToModel(cvf::ModelBasicList* model)
{
if (m_nativeFaultFaces.notNull())
{
model->addPart(m_nativeFaultFaces.p());
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::appendOppositeFaultFacesToModel(cvf::ModelBasicList* model)
{
if (m_oppositeFaultFaces.notNull())
{
model->addPart(m_oppositeFaultFaces.p());
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::appendLabelPartsToModel(cvf::ModelBasicList* model)
{
if (m_faultLabelPart.notNull()) model->addPart(m_faultLabelPart.p());
if (m_faultLabelLinePart.notNull()) model->addPart(m_faultLabelLinePart.p());
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::appendMeshLinePartsToModel(cvf::ModelBasicList* model)
{
if (m_nativeFaultGridLines.notNull()) model->addPart(m_nativeFaultGridLines.p());
if (m_oppositeFaultGridLines.notNull()) model->addPart(m_oppositeFaultGridLines.p());
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::appendNNCFacesToModel(cvf::ModelBasicList* model)
{
if (m_NNCFaces.notNull()) model->addPart(m_NNCFaces.p());
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Effect> RivFaultPartMgr::cellResultEffect(const cvf::ScalarMapper* mapper, caf::PolygonOffset polygonOffset) const
{
CVF_ASSERT(mapper);
caf::ScalarMapperEffectGenerator scalarEffgen(mapper, polygonOffset);
scalarEffgen.setFaceCulling(faceCullingMode());
scalarEffgen.setOpacityLevel(m_opacityLevel);
cvf::ref<cvf::Effect> scalarEffect = scalarEffgen.generateEffect();
return scalarEffect;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
caf::FaceCulling RivFaultPartMgr::faceCullingMode() const
{
bool isShowingGrid = m_rimFaultCollection->isGridVisualizationMode();
if (!isShowingGrid )
{
if (m_rimFaultCollection->faultResult() == RimFaultCollection::FAULT_BACK_FACE_CULLING)
{
if (m_grid->mainGrid()->faceNormalsIsOutwards())
{
return caf::FC_BACK;
}
else
{
return caf::FC_FRONT;
}
}
else if (m_rimFaultCollection->faultResult() == RimFaultCollection::FAULT_FRONT_FACE_CULLING)
{
if (m_grid->mainGrid()->faceNormalsIsOutwards())
{
return caf::FC_FRONT;
}
else
{
return caf::FC_BACK;
}
}
else
{
return caf::FC_NONE;
}
}
else
{
// Do not perform face culling in grid mode to make sure the displayed grid is watertight
return caf::FC_NONE;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivFaultPartMgr::updateNNCColors(RimResultSlot* cellResultSlot)
{
if (m_NNCFaces.isNull()) return;
if (cellResultSlot && cellResultSlot->resultVariable() == RimDefines::combinedTransmissibilityResultName())
{
const cvf::ScalarMapper* mapper = cellResultSlot->legendConfig()->scalarMapper();
m_NNCGenerator->textureCoordinates(m_NNCTextureCoords.p(), mapper);
cvf::ref<cvf::Effect> nncEffect;
if (m_rimFaultCollection->showFaultFaces || m_rimFaultCollection->showOppositeFaultFaces)
{
// Move NNC closer to camera to avoid z-fighting with grid surface
caf::ScalarMapperEffectGenerator nncEffgen(mapper, caf::PO_NEG_LARGE);
nncEffect = nncEffgen.generateEffect();
}
else
{
// If no grid is present, use same offset as grid geometry to be able to see mesh lines
caf::ScalarMapperEffectGenerator nncEffgen(mapper, caf::PO_1);
nncEffect = nncEffgen.generateEffect();
}
cvf::DrawableGeo* dg = dynamic_cast<cvf::DrawableGeo*>(m_NNCFaces->drawable());
if (dg) dg->setTextureCoordArray(m_NNCTextureCoords.p());
m_NNCFaces->setEffect(nncEffect.p());
}
else
{
// NNC faces a bit lighter than the fault for now
cvf::Color3f nncColor = m_defaultColor;
nncColor.r() += (1.0 - nncColor.r()) * 0.2;
nncColor.g() += (1.0 - nncColor.g()) * 0.2;
nncColor.g() += (1.0 - nncColor.b()) * 0.2;
cvf::ref<cvf::Effect> nncEffect;
if (m_rimFaultCollection->showFaultFaces || m_rimFaultCollection->showOppositeFaultFaces)
{
// Move NNC closer to camera to avoid z-fighting with grid surface
caf::SurfaceEffectGenerator nncEffgen(nncColor, caf::PO_NEG_LARGE);
nncEffect = nncEffgen.generateEffect();
}
else
{
// If no grid is present, use same offset as grid geometry to be able to see mesh lines
caf::SurfaceEffectGenerator nncEffgen(nncColor, caf::PO_1);
nncEffect = nncEffgen.generateEffect();
}
m_NNCFaces->setEffect(nncEffect.p());
}
}