ResInsight/ApplicationCode/ReservoirDataModel/RigNumberOfFloodedPoreVolumesCalculator.cpp

438 lines
20 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigNumberOfFloodedPoreVolumesCalculator.h"
#include "RiaPorosityModel.h"
#include "RigActiveCellInfo.h"
#include "RigCaseCellResultsData.h"
#include "RigEclipseCaseData.h"
#include "RigMainGrid.h"
#include "RigReservoirBuilderMock.h"
#include "RimEclipseCase.h"
#include "RimReservoirCellResultsStorage.h"
#include <vector>
#include <QString>
#include "cafProgressInfo.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigNumberOfFloodedPoreVolumesCalculator::RigNumberOfFloodedPoreVolumesCalculator(RimEclipseCase* caseToApply,
const std::vector<QString> tracerNames)
{
RigMainGrid* mainGrid = caseToApply->eclipseCaseData()->mainGrid();
RigEclipseCaseData* eclipseCaseData = caseToApply->eclipseCaseData();
RigCaseCellResultsData* gridCellResults = caseToApply->results(RiaDefines::MATRIX_MODEL);
RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo(RiaDefines::MATRIX_MODEL);
size_t resultCellCount = actCellInfo->reservoirCellResultCount();
size_t timeStepCount = caseToApply->eclipseCaseData()->results(RiaDefines::MATRIX_MODEL)->maxTimeStepCount();
size_t totalProgress = tracerNames.size()
+ 8
+ timeStepCount
+ 2* timeStepCount;
caf::ProgressInfo progress(totalProgress, "Calculating number of flooded mobile pore volumes." );
progress.setProgressDescription("Loading required results");
// PORV
const std::vector<double>* porvResults = nullptr;
std::vector<double> porvActiveCellsResultStorage;
porvResults = RigCaseCellResultsData::getResultIndexableStaticResult(actCellInfo, gridCellResults, "PORV", porvActiveCellsResultStorage);
progress.incrementProgress();
// SWCR if defined
const std::vector<double>* swcrResults = nullptr;
swcrResults = RigCaseCellResultsData::getResultIndexableStaticResult(actCellInfo, gridCellResults, "SWCR", porvActiveCellsResultStorage);
progress.incrementProgress();
std::vector<RigEclipseResultAddress> tracerResAddrs;
for (QString tracerName : tracerNames)
{
RigEclipseResultAddress tracerResAddr(RiaDefines::DYNAMIC_NATIVE, tracerName);
if (gridCellResults->ensureKnownResultLoaded(tracerResAddr) )
{
tracerResAddrs.push_back(tracerResAddr);
}
progress.incrementProgress();
}
std::vector<std::vector<double> > summedTracersAtAllTimesteps;
//TODO: Option for Oil and Gas instead of water
RigEclipseResultAddress flrWatIAddr(RiaDefines::DYNAMIC_NATIVE, "FLRWATI+");
RigEclipseResultAddress flrWatJAddr(RiaDefines::DYNAMIC_NATIVE, "FLRWATJ+");
RigEclipseResultAddress flrWatKAddr(RiaDefines::DYNAMIC_NATIVE, "FLRWATK+");
bool hasFlowrateI = gridCellResults->ensureKnownResultLoaded(flrWatIAddr);
progress.incrementProgress();
bool hasFlowrateJ = gridCellResults->ensureKnownResultLoaded(flrWatJAddr);
progress.incrementProgress();
bool hasFlowrateK = gridCellResults->ensureKnownResultLoaded(flrWatKAddr);
progress.incrementProgress();
std::vector<const std::vector<double>* > flowrateIatAllTimeSteps;
std::vector<const std::vector<double>* > flowrateJatAllTimeSteps;
std::vector<const std::vector<double>* > flowrateKatAllTimeSteps;
RigNNCData* nncData = eclipseCaseData->mainGrid()->nncData();
const std::vector<RigConnection> connections = nncData->connections();
progress.incrementProgress();
//TODO: oil or gas flowrate
std::vector<const std::vector<double>* > flowrateNNCatAllTimeSteps;
QString nncConnectionProperty = mainGrid->nncData()->propertyNameFluxWat();
progress.incrementProgress();
std::vector<double> daysSinceSimulationStart = caseToApply->eclipseCaseData()->results(RiaDefines::MATRIX_MODEL)->daysSinceSimulationStart();
progress.incrementProgress();
for (size_t timeStep = 0; timeStep < daysSinceSimulationStart.size(); timeStep++)
{
const std::vector<double>* flowrateI = nullptr;
if (hasFlowrateI)
{
flowrateI = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(flrWatIAddr,
timeStep));
}
flowrateIatAllTimeSteps.push_back(flowrateI);
const std::vector<double>* flowrateJ = nullptr;
if (hasFlowrateJ)
{
flowrateJ = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(flrWatJAddr,
timeStep));
}
flowrateJatAllTimeSteps.push_back(flowrateJ);
const std::vector<double>* flowrateK = nullptr;
if (hasFlowrateK)
{
flowrateK = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(flrWatKAddr,
timeStep));
}
flowrateKatAllTimeSteps.push_back(flowrateK);
size_t nativeTimeStepIndex = caseToApply->uiToNativeTimeStepIndex(timeStep);
const std::vector<double>* connectionFlowrate = nncData->dynamicConnectionScalarResultByName(nncConnectionProperty,
nativeTimeStepIndex);
flowrateNNCatAllTimeSteps.push_back(connectionFlowrate);
//sum all tracers at current timestep
std::vector<double> summedTracerValues(resultCellCount);
for (const RigEclipseResultAddress& tracerResAddr : tracerResAddrs)
{
const std::vector<double>* tracerResult = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(tracerResAddr, timeStep));
for ( size_t i = 0; i < summedTracerValues.size(); i++ )
{
summedTracerValues[i] += tracerResult->at(i);
}
}
summedTracersAtAllTimesteps.push_back(summedTracerValues);
progress.incrementProgress();
}
progress.setNextProgressIncrement(2*timeStepCount);
progress.setProgressDescription("Calculating");
calculate(mainGrid,
caseToApply,
daysSinceSimulationStart,
porvResults,
swcrResults,
flowrateIatAllTimeSteps,
flowrateJatAllTimeSteps,
flowrateKatAllTimeSteps,
connections,
flowrateNNCatAllTimeSteps,
summedTracersAtAllTimesteps);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::vector<double>>& RigNumberOfFloodedPoreVolumesCalculator::numberOfFloodedPorevolumes()
{
return m_cumWinflowPVAllTimeSteps;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigNumberOfFloodedPoreVolumesCalculator::calculate(RigMainGrid* mainGrid,
RimEclipseCase* caseToApply,
std::vector<double> daysSinceSimulationStart,
const std::vector<double>* porvResultsActiveCellsOnly,
const std::vector<double>* swcrResults,
std::vector<const std::vector<double>* > flowrateIatAllTimeSteps,
std::vector<const std::vector<double>* > flowrateJatAllTimeSteps,
std::vector<const std::vector<double>* > flowrateKatAllTimeSteps,
const std::vector<RigConnection> connections,
std::vector<const std::vector<double>* > flowrateNNCatAllTimeSteps,
std::vector<std::vector<double> > summedTracersAtAllTimesteps)
{
//size_t totalNumberOfCells = mainGrid->globalCellArray().size();
RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo(RiaDefines::MATRIX_MODEL);
size_t resultCellCount = actCellInfo->reservoirCellResultCount();
caf::ProgressInfo progress(2*daysSinceSimulationStart.size() , "");
std::vector<std::vector<double>> cellQwInAtAllTimeSteps;
std::vector<double> cellQwInTimeStep0(resultCellCount);
cellQwInAtAllTimeSteps.push_back(cellQwInTimeStep0);
for (size_t timeStep = 1; timeStep < daysSinceSimulationStart.size(); timeStep++)
{
std::vector<double> totoalFlowrateIntoCell(resultCellCount); //brukt result celle index / active antall i stedet
if ( flowrateIatAllTimeSteps[timeStep-1] != nullptr
&& flowrateJatAllTimeSteps[timeStep-1] != nullptr
&& flowrateKatAllTimeSteps[timeStep-1] != nullptr)
{
const std::vector<double>* flowrateI = flowrateIatAllTimeSteps[timeStep-1];
const std::vector<double>* flowrateJ = flowrateJatAllTimeSteps[timeStep-1];
const std::vector<double>* flowrateK = flowrateKatAllTimeSteps[timeStep-1];
if (flowrateI->size() > 0 && flowrateJ->size() > 0 && flowrateK->size() > 0)
{
distributeNeighbourCellFlow(mainGrid,
caseToApply,
summedTracersAtAllTimesteps[timeStep-1],
flowrateI,
flowrateJ,
flowrateK,
totoalFlowrateIntoCell);
}
}
const std::vector<double>* flowrateNNC = flowrateNNCatAllTimeSteps[timeStep-1];
if (flowrateNNC && flowrateNNC->size() > 0)
{
distributeNNCflow(connections,
caseToApply,
summedTracersAtAllTimesteps[timeStep-1],
flowrateNNC,
totoalFlowrateIntoCell);
}
std::vector<double> CellQwIn(resultCellCount);
double daysSinceSimStartNow = daysSinceSimulationStart[timeStep];
double daysSinceSimStartLastTimeStep = daysSinceSimulationStart[timeStep - 1];
double deltaT = daysSinceSimStartNow - daysSinceSimStartLastTimeStep;
for (size_t cellResultIndex = 0; cellResultIndex < resultCellCount; cellResultIndex++)
{
CellQwIn[cellResultIndex] = cellQwInAtAllTimeSteps[timeStep - 1][cellResultIndex]
+ (totoalFlowrateIntoCell[cellResultIndex]) * deltaT;
}
cellQwInAtAllTimeSteps.push_back(CellQwIn);
progress.incrementProgress();
}
//Calculate number-of-cell-PV flooded
std::vector<double> cumWinflowPVTimeStep0(resultCellCount);
m_cumWinflowPVAllTimeSteps.clear();
m_cumWinflowPVAllTimeSteps.push_back(cumWinflowPVTimeStep0);
for (size_t timeStep = 1; timeStep < daysSinceSimulationStart.size(); timeStep++)
{
std::vector<double> cumWinflowPV(resultCellCount);
for (size_t cellResultIndex = 0; cellResultIndex < resultCellCount; cellResultIndex++)
{
double scaledPoreVolume = porvResultsActiveCellsOnly->at(cellResultIndex);
if (swcrResults != nullptr && swcrResults->size() == resultCellCount)
{
scaledPoreVolume = scaledPoreVolume * (1 - swcrResults->at(cellResultIndex));
}
cumWinflowPV[cellResultIndex] = cellQwInAtAllTimeSteps[timeStep][cellResultIndex]
/ scaledPoreVolume;
}
m_cumWinflowPVAllTimeSteps.push_back(cumWinflowPV);
progress.incrementProgress();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigNumberOfFloodedPoreVolumesCalculator::distributeNNCflow(std::vector<RigConnection> connections,
RimEclipseCase* caseToApply,
std::vector<double> summedTracerValues,
const std::vector<double>* flowrateNNC,
std::vector<double> &flowrateIntoCell)
{
RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo(RiaDefines::MATRIX_MODEL);
for (size_t connectionIndex = 0; connectionIndex < connections.size(); connectionIndex++)
{
RigConnection connection = connections[connectionIndex];
double connectionValue = flowrateNNC->at(connectionIndex);
size_t cell1Index = connection.m_c1GlobIdx;
size_t cell1ResultIndex = actCellInfo->cellResultIndex(cell1Index);
size_t cell2Index = connection.m_c2GlobIdx;
size_t cell2ResultIndex = actCellInfo->cellResultIndex(cell2Index);
if (connectionValue > 0)
{
//Flow out of cell with cell1index, into cell cell2index
flowrateIntoCell[cell2ResultIndex] += connectionValue * summedTracerValues[cell1ResultIndex];
}
else if (connectionValue < 0)
{
//flow out of cell with cell2index, into cell cell1index
flowrateIntoCell[cell1ResultIndex] += -1.0*connectionValue * summedTracerValues[cell2ResultIndex];
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigNumberOfFloodedPoreVolumesCalculator::distributeNeighbourCellFlow(RigMainGrid* mainGrid,
RimEclipseCase* caseToApply,
std::vector<double> summedTracerValues,
const std::vector<double>* flrWatResultI,
const std::vector<double>* flrWatResultJ,
const std::vector<double>* flrWatResultK,
std::vector<double> &totalFlowrateIntoCell)
{
RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo(RiaDefines::MATRIX_MODEL);
for (size_t globalCellIndex = 0; globalCellIndex < mainGrid->globalCellArray().size(); globalCellIndex++)
{
if (!actCellInfo->isActive(globalCellIndex)) continue;
const RigCell& cell = mainGrid->globalCellArray()[globalCellIndex];
RigGridBase* hostGrid = cell.hostGrid();
size_t gridLocalCellIndex = cell.gridLocalCellIndex();
size_t cellResultIndex = actCellInfo->cellResultIndex(globalCellIndex);
size_t i, j, k;
hostGrid->ijkFromCellIndex(gridLocalCellIndex, &i, &j, &k);
if (i < (hostGrid->cellCountI()-1))
{
size_t gridLocalCellIndexPosINeighbour = hostGrid->cellIndexFromIJK(i + 1, j, k);
size_t reservoirCellIndexPosINeighbour = hostGrid->reservoirCellIndex(gridLocalCellIndexPosINeighbour);
size_t cellResultIndexPosINeighbour = actCellInfo->cellResultIndex(reservoirCellIndexPosINeighbour);
if (!actCellInfo->isActive(reservoirCellIndexPosINeighbour)) continue;
if (hostGrid->cell(gridLocalCellIndexPosINeighbour).subGrid() != nullptr)
{
//subgrid exists in cell, will be handled though NNCs
continue;
}
if (flrWatResultI->at(cellResultIndex) > 0)
{
//Flow out of cell globalCellIndex, into cell i+1
totalFlowrateIntoCell[cellResultIndexPosINeighbour] += flrWatResultI->at(cellResultIndex) * summedTracerValues[cellResultIndex];
}
else if (flrWatResultI->at(cellResultIndex) < 0)
{
//Flow into cell globelCellIndex, from cell i+1
totalFlowrateIntoCell[cellResultIndex] += (-1.0) * flrWatResultI->at(cellResultIndex) * summedTracerValues[cellResultIndexPosINeighbour];
}
}
if (j < (hostGrid->cellCountJ()-1))
{
size_t gridLocalCellIndexPosJNeighbour = hostGrid->cellIndexFromIJK(i, j + 1, k);
size_t reservoirCellIndexPosJNeighbour = hostGrid->reservoirCellIndex(gridLocalCellIndexPosJNeighbour);
size_t cellResultIndexPosJNeighbour = actCellInfo->cellResultIndex(reservoirCellIndexPosJNeighbour);
if (!actCellInfo->isActive(reservoirCellIndexPosJNeighbour)) continue;
if (hostGrid->cell(gridLocalCellIndexPosJNeighbour).subGrid() != nullptr)
{
//subgrid exists in cell, will be handled though NNCs
continue;
}
if (flrWatResultJ->at(cellResultIndex) > 0)
{
//Flow out of cell globalCellIndex, into cell i+1
totalFlowrateIntoCell[cellResultIndexPosJNeighbour] += flrWatResultJ->at(cellResultIndex) * summedTracerValues[cellResultIndex];
}
else if (flrWatResultJ->at(cellResultIndex) < 0)
{
//Flow into cell globelCellIndex, from cell i+1
totalFlowrateIntoCell[cellResultIndex] += (-1.0) * flrWatResultJ->at(cellResultIndex) * summedTracerValues[cellResultIndexPosJNeighbour];
}
}
if (k < (hostGrid->cellCountK()-1))
{
size_t gridLocalCellIndexPosKNeighbour = hostGrid->cellIndexFromIJK(i, j, k + 1);
size_t reservoirCellIndexPosKNeighbour = hostGrid->reservoirCellIndex(gridLocalCellIndexPosKNeighbour);
size_t cellResultIndexPosKNeighbour = actCellInfo->cellResultIndex(reservoirCellIndexPosKNeighbour);
if (!actCellInfo->isActive(reservoirCellIndexPosKNeighbour)) continue;
if (hostGrid->cell(gridLocalCellIndexPosKNeighbour).subGrid() != nullptr)
{
//subgrid exists in cell, will be handled though NNCs
continue;
}
if (flrWatResultK->at(cellResultIndex) > 0)
{
//Flow out of cell globalCellIndex, into cell i+1
totalFlowrateIntoCell[cellResultIndexPosKNeighbour] += flrWatResultK->at(cellResultIndex) * summedTracerValues[cellResultIndex];
}
else if (flrWatResultK->at(cellResultIndex) < 0)
{
//Flow into cell globelCellIndex, from cell i+1
totalFlowrateIntoCell[cellResultIndex] += (-1.0) * flrWatResultK->at(cellResultIndex) * summedTracerValues[cellResultIndexPosKNeighbour];
}
}
}
}