Files
ResInsight/ApplicationLibCode/ProjectDataModel/Faults/RimFaultReactivationDataAccessorStressEclipse.cpp
2024-02-09 12:39:43 +01:00

295 lines
14 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2023 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimFaultReactivationDataAccessorStressEclipse.h"
#include "RiaEclipseUnitTools.h"
#include "RiaInterpolationTools.h"
#include "RiaLogging.h"
#include "RiaWellLogUnitTools.h"
#include "RigCaseCellResultsData.h"
#include "RigEclipseResultAddress.h"
#include "RigEclipseWellLogExtractor.h"
#include "RigFaultReactivationModel.h"
#include "RigGriddedPart3d.h"
#include "RigMainGrid.h"
#include "RigResultAccessorFactory.h"
#include "RigWellPath.h"
#include "RimEclipseCase.h"
#include "RimFaultReactivationDataAccessorStress.h"
#include "RimFaultReactivationDataAccessorWellLogExtraction.h"
#include "RimFaultReactivationEnums.h"
#include "cvfObject.h"
#include "cvfVector3.h"
#include <cmath>
#include <limits>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimFaultReactivationDataAccessorStressEclipse::RimFaultReactivationDataAccessorStressEclipse(
RimEclipseCase* eclipseCase,
RimFaultReactivation::Property property,
double gradient,
double seabedDepth,
double waterDensity,
double lateralStressComponent,
const std::map<RimFaultReactivation::ElementSets, double>& densities )
: RimFaultReactivationDataAccessorStress( property, gradient, seabedDepth )
, m_eclipseCase( eclipseCase )
, m_caseData( nullptr )
, m_mainGrid( nullptr )
, m_waterDensity( waterDensity )
, m_lateralStressComponent( lateralStressComponent )
, m_densities( densities )
{
if ( m_eclipseCase )
{
m_caseData = m_eclipseCase->eclipseCaseData();
m_mainGrid = m_eclipseCase->mainGrid();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimFaultReactivationDataAccessorStressEclipse::~RimFaultReactivationDataAccessorStressEclipse()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFaultReactivationDataAccessorStressEclipse::updateResultAccessor()
{
if ( !m_caseData ) return;
RigEclipseResultAddress resVarAddress( RiaDefines::ResultCatType::DYNAMIC_NATIVE, "PRESSURE" );
m_eclipseCase->results( RiaDefines::PorosityModelType::MATRIX_MODEL )->ensureKnownResultLoaded( resVarAddress );
m_resultAccessor =
RigResultAccessorFactory::createFromResultAddress( m_caseData, 0, RiaDefines::PorosityModelType::MATRIX_MODEL, m_timeStep, resVarAddress );
auto [wellPaths, extractors] =
RimFaultReactivationDataAccessorWellLogExtraction::createEclipseWellPathExtractors( *m_model, *m_caseData, m_seabedDepth );
m_wellPaths = wellPaths;
m_extractors = extractors;
for ( auto [gridPart, wellPath] : m_wellPaths )
{
auto extractor = m_extractors[gridPart];
std::vector<cvf::Vec3d> intersections = extractor->intersections();
addOverburdenAndUnderburdenPoints( intersections, wellPath->wellPathPoints() );
m_stressValues[gridPart] =
integrateVerticalStress( *wellPath.p(), intersections, *m_model, gridPart, m_seabedDepth, m_waterDensity, m_densities );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimFaultReactivationDataAccessorStressEclipse::addOverburdenAndUnderburdenPoints( std::vector<cvf::Vec3d>& intersections,
const std::vector<cvf::Vec3d>& wellPathPoints )
{
// Insert points at top of overburden and under underburden
intersections.insert( intersections.begin(), wellPathPoints.front() );
intersections.push_back( wellPathPoints.back() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimFaultReactivationDataAccessorStressEclipse::isDataAvailable() const
{
return m_mainGrid != nullptr && m_resultAccessor.notNull();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFaultReactivationDataAccessorStressEclipse::extractStressValue( StressType stressType,
const cvf::Vec3d& position,
RimFaultReactivation::GridPart gridPart ) const
{
CAF_ASSERT( m_extractors.find( gridPart ) != m_extractors.end() );
auto extractor = m_extractors.find( gridPart )->second;
CAF_ASSERT( m_stressValues.find( gridPart ) != m_stressValues.end() );
auto stressValues = m_stressValues.find( gridPart )->second;
CAF_ASSERT( m_wellPaths.find( gridPart ) != m_wellPaths.end() );
auto wellPath = m_wellPaths.find( gridPart )->second;
auto intersections = extractor->intersections();
addOverburdenAndUnderburdenPoints( intersections, wellPath->wellPathPoints() );
CAF_ASSERT( stressValues.size() == intersections.size() );
auto [topIdx, bottomIdx] = RimFaultReactivationDataAccessorWellLogExtraction::findIntersectionsForTvd( intersections, position.z() );
if ( topIdx != -1 && bottomIdx != -1 )
{
double topValue = stressValues[topIdx];
double bottomValue = stressValues[bottomIdx];
if ( !std::isinf( topValue ) && !std::isinf( bottomValue ) )
{
// Interpolate value from the two closest points.
std::vector<double> xs = { intersections[bottomIdx].z(), intersections[topIdx].z() };
std::vector<double> ys = { stressValues[bottomIdx], stressValues[topIdx] };
return RiaEclipseUnitTools::pascalToBar( RiaInterpolationTools::linear( xs, ys, position.z() ) );
}
}
else if ( position.z() <= intersections.back().z() )
{
return RiaEclipseUnitTools::pascalToBar( stressValues.back() );
}
return std::numeric_limits<double>::infinity();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimFaultReactivationDataAccessorStressEclipse::isPositionValid( const cvf::Vec3d& position,
const cvf::Vec3d& topPosition,
const cvf::Vec3d& bottomPosition,
RimFaultReactivation::GridPart gridPart ) const
{
// auto [porBar, extractionPosition] = calculatePorBar( position, m_gradient, gridPart );
// return !std::isinf( porBar );
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<double, cvf::Vec3d> RimFaultReactivationDataAccessorStressEclipse::calculatePorBar( const cvf::Vec3d& position,
RimFaultReactivation::ElementSets elementSet,
double gradient,
RimFaultReactivation::GridPart gridPart ) const
{
if ( ( m_mainGrid != nullptr ) && m_resultAccessor.notNull() )
{
CAF_ASSERT( m_extractors.find( gridPart ) != m_extractors.end() );
auto extractor = m_extractors.find( gridPart )->second;
CAF_ASSERT( m_wellPaths.find( gridPart ) != m_wellPaths.end() );
auto wellPath = m_wellPaths.find( gridPart )->second;
auto [values, intersections] =
RimFaultReactivationDataAccessorWellLogExtraction::extractValuesAndIntersections( *m_resultAccessor.p(), *extractor.p(), *wellPath );
auto [value, extractionPos] = RimFaultReactivationDataAccessorWellLogExtraction::calculatePorBar( *m_model,
gridPart,
intersections,
values,
position,
elementSet,
m_gradient );
if ( extractionPos.isUndefined() )
{
auto cellIdx = m_mainGrid->findReservoirCellIndexFromPoint( position );
if ( cellIdx != cvf::UNDEFINED_SIZE_T )
{
double valueFromEclipse = m_resultAccessor->cellScalar( cellIdx );
if ( !std::isinf( valueFromEclipse ) ) return { valueFromEclipse, position };
}
return { value, position };
}
return { value, extractionPos };
}
return { std::numeric_limits<double>::infinity(), cvf::Vec3d::UNDEFINED };
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double>
RimFaultReactivationDataAccessorStressEclipse::integrateVerticalStress( const RigWellPath& wellPath,
const std::vector<cvf::Vec3d>& intersections,
const RigFaultReactivationModel& model,
RimFaultReactivation::GridPart gridPart,
double seabedDepth,
double waterDensity,
const std::map<RimFaultReactivation::ElementSets, double>& densities )
{
double gravity = RiaWellLogUnitTools<double>::gravityAcceleration();
double seaWaterLoad = gravity * std::abs( seabedDepth ) * waterDensity;
std::vector<double> values = { seaWaterLoad };
auto part = model.grid( gridPart );
CAF_ASSERT( part );
auto elementSets = part->elementSets();
double previousDensity = densities.find( RimFaultReactivation::ElementSets::OverBurden )->second;
for ( size_t i = 1; i < intersections.size(); i++ )
{
double previousValue = values[i - 1];
double previousDepth = intersections[i - 1].z();
double currentDepth = intersections[i].z();
double deltaDepth = previousDepth - currentDepth;
double density = previousDensity;
auto [isOk, elementSet] =
RimFaultReactivationDataAccessorWellLogExtraction::findElementSetForPoint( *part, intersections[i], elementSets );
if ( isOk )
{
// Unit: kg/m^3
CAF_ASSERT( densities.find( elementSet ) != densities.end() );
density = densities.find( elementSet )->second;
}
double value = previousValue + density * gravity * deltaDepth;
values.push_back( value );
previousDensity = density;
}
return values;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFaultReactivationDataAccessorStressEclipse::lateralStressComponentX( const cvf::Vec3d& position,
RimFaultReactivation::ElementSets elementSet,
RimFaultReactivation::GridPart gridPart ) const
{
return m_lateralStressComponent;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimFaultReactivationDataAccessorStressEclipse::lateralStressComponentY( const cvf::Vec3d& position,
RimFaultReactivation::ElementSets elementSet,
RimFaultReactivation::GridPart gridPart ) const
{
return m_lateralStressComponent;
}