Files
ResInsight/Fwk/VizFwk/LibViewing/cvfLocators.cpp
sigurdp df5f1f85af Integrated from CeeSol Perforce, changelist 203
AppFwk tests.
Added rotation to locator.
Caf::FrameAnimationControl : Set current frame to 0 if a framecount
change makes the current frame invalid
2013-11-01 16:54:24 +01:00

503 lines
18 KiB
C++

//##################################################################################################
//
// Custom Visualization Core library
// Copyright (C) 2011-2013 Ceetron AS
//
// This library may be used under the terms of either the GNU General Public License or
// the GNU Lesser General Public License as follows:
//
// GNU General Public License Usage
// This library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <<http://www.gnu.org/licenses/gpl.html>>
// for more details.
//
// GNU Lesser General Public License Usage
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation; either version 2.1 of the License, or
// (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU Lesser General Public License at <<http://www.gnu.org/licenses/lgpl-2.1.html>>
// for more details.
//
//##################################################################################################
#include "cvfBase.h"
#include "cvfLocators.h"
#include "cvfCamera.h"
#include "cvfViewport.h"
#include "cvfRay.h"
namespace cvf {
//==================================================================================================
///
/// \class cvf::LocatorTranslateOnPlane
/// \ingroup Viewing
///
///
///
//==================================================================================================
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
LocatorTranslateOnPlane::LocatorTranslateOnPlane(Camera* camera)
: m_camera(camera),
m_plane(0, 0, 1, 0),
m_pos(0, 0, 0),
m_lastPos(0, 0, 0)
{
CVF_ASSERT(camera);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
LocatorTranslateOnPlane::~LocatorTranslateOnPlane()
{
// Empty destructor to avoid errors with undefined types when cvf::ref's destructor gets called
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void LocatorTranslateOnPlane::setPosition(const Vec3d& position, const Vec3d& planeNormal)
{
m_pos = position;
m_plane.setFromPointAndNormal(position, planeNormal);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
Vec3d LocatorTranslateOnPlane::position() const
{
return m_pos;
}
//--------------------------------------------------------------------------------------------------
/// The window coordinates are in OpenGL style coordinates, which means a right handed
/// coordinate system with the origin in the lower left corner of the window.
//--------------------------------------------------------------------------------------------------
void LocatorTranslateOnPlane::start(int x, int y)
{
CVF_ASSERT(m_camera.notNull());
ref<Ray> ray = m_camera->rayFromWindowCoordinates(x, y);
Vec3d isect(0, 0, 0);
ray->planeIntersect(m_plane, &isect);
m_lastPos = isect;
}
//--------------------------------------------------------------------------------------------------
/// The window coordinates are in OpenGL style coordinates, which means a right handed
/// coordinate system with the origin in the lower left corner of the window.
//--------------------------------------------------------------------------------------------------
bool LocatorTranslateOnPlane::update(int x, int y)
{
CVF_ASSERT(m_camera.notNull());
Vec3d oldPos = m_pos;
ref<Ray> ray = m_camera->rayFromWindowCoordinates(x, y);
Vec3d isect(0, 0, 0);
if (ray->planeIntersect(m_plane, &isect))
{
Vec3d delta = (isect - m_lastPos);
m_plane.projectVector(delta, &delta);
m_pos += delta;
m_lastPos = isect;
}
if (m_pos == oldPos)
{
return false;
}
else
{
return true;
}
}
//==================================================================================================
///
/// \class cvf::LocatorPanWalkRotate
/// \ingroup Viewing
///
/// Currently, rotate is not supported
///
//==================================================================================================
LocatorPanWalkRotate::LocatorPanWalkRotate(Camera* camera)
: m_camera(camera),
m_operation(PAN),
m_pos(0, 0, 0),
m_rotQuat(0, 0, 0, 1),
m_lastPosX(0),
m_lastPosY(0)
{
CVF_ASSERT(camera);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
LocatorPanWalkRotate::~LocatorPanWalkRotate()
{
// Empty destructor to avoid errors with undefined types when cvf::ref's destructor gets called
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void LocatorPanWalkRotate::setOperation(Operation op)
{
m_operation = op;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void LocatorPanWalkRotate::setPosition(const Vec3d& position)
{
m_pos = position;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
Vec3d LocatorPanWalkRotate::position() const
{
return m_pos;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void LocatorPanWalkRotate::setOrientation(const Mat3d& m)
{
m_rotQuat = Quatd::fromRotationMatrix(Mat4d(m));
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Mat3d LocatorPanWalkRotate::orientation() const
{
return m_rotQuat.toMatrix3();
}
//--------------------------------------------------------------------------------------------------
/// The window coordinates are in OpenGL style coordinates, which means a right handed
/// coordinate system with the origin in the lower left corner of the window.
//--------------------------------------------------------------------------------------------------
void LocatorPanWalkRotate::start(int x, int y)
{
m_lastPosX = x;
m_lastPosY = y;
}
//--------------------------------------------------------------------------------------------------
/// The window coordinates are in OpenGL style coordinates, which means a right handed
/// coordinate system with the origin in the lower left corner of the window.
//--------------------------------------------------------------------------------------------------
bool LocatorPanWalkRotate::update(int x, int y)
{
CVF_ASSERT(m_camera.notNull());
if (x == m_lastPosX && y == m_lastPosY)
{
return false;
}
// Need a non-zero viewport
if (m_camera->viewport()->width() <= 0 ||
m_camera->viewport()->height() <= 0)
{
return false;
}
Vec3d oldPos = m_pos;
Quatd oldRotQuat = m_rotQuat;
if (m_operation == PAN)
{
updatePan(x, y);
}
else if (m_operation == WALK)
{
updateWalk(y);
}
else if (m_operation == ROTATE)
{
updateRotation(x, y);
}
m_lastPosX = x;
m_lastPosY = y;
if (m_pos == oldPos && m_rotQuat == oldRotQuat)
{
return false;
}
else
{
return true;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void LocatorPanWalkRotate::updatePan(int oglWinCoordX, int oglWinCoordY)
{
CVF_ASSERT(m_camera.notNull());
// Normalized movement in screen plane [0, 1]
const double vpPixSizeX = m_camera->viewport()->width();
const double vpPixSizeY = m_camera->viewport()->height();
CVF_ASSERT(vpPixSizeX > 0 && vpPixSizeY > 0);
const double tx = (oglWinCoordX - m_lastPosX)/vpPixSizeX;
const double ty = (oglWinCoordY - m_lastPosY)/vpPixSizeY;
// Viewport size in world coordinates
const double aspect = m_camera->aspectRatio();
const double vpWorldSizeY = m_camera->frontPlaneFrustumHeight();
const double vpWorldSizeX = vpWorldSizeY*aspect;
const Vec3d camUp = m_camera->up();
const Vec3d camRight = m_camera->right();
Camera::ProjectionType projType = m_camera->projection();
if (projType == Camera::PERSPECTIVE)
{
// Compute distance from camera to point projected onto camera forward direction
const Vec3d camPos = m_camera->position();
const Vec3d camDir = m_camera->direction();
const Vec3d vDiff = m_pos - camPos;
const double camPointDist = Math::abs(camDir*vDiff);
const double nearPlane = m_camera->nearPlane();
Vec3d vX = camRight*((tx*vpWorldSizeX)/nearPlane)*camPointDist;
Vec3d vY = camUp*((ty*vpWorldSizeY)/nearPlane)*camPointDist;
Vec3d translation = vX + vY;
m_pos += translation;
}
else if (projType == Camera::ORTHO)
{
Vec3d vX = camRight*tx*vpWorldSizeX;
Vec3d vY = camUp*ty*vpWorldSizeY;
Vec3d translation = vX + vY;
m_pos += translation;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void LocatorPanWalkRotate::updateWalk(int oglWinCoordY)
{
CVF_ASSERT(m_camera.notNull());
// Normalized movement in screen plane [0, 1]
const double vpPixSizeY = m_camera->viewport()->height();
CVF_ASSERT(vpPixSizeY > 0);
const double ty = (oglWinCoordY - m_lastPosY)/vpPixSizeY;
const double vpWorldSizeY = m_camera->frontPlaneFrustumHeight();
const Vec3d camDir = m_camera->direction();
Camera::ProjectionType projType = m_camera->projection();
// This is the distance that we will move the point in response to a full (whole viewport) movement of the mouse
// Might need to revisit this to determine target distance
// In that case it might be an idea to look at the trackball manipulator
double targetDist = 0;
if (projType == Camera::PERSPECTIVE)
{
// Compute distance from camera to point projected onto camera forward direction
const Vec3d camPos = m_camera->position();
const Vec3d vDiff = m_pos - camPos;
const double camPointDist = Math::abs(camDir*vDiff);
targetDist = camPointDist;
}
else if (projType == Camera::ORTHO)
{
targetDist = vpWorldSizeY;
}
double moveDist = ty*targetDist;
Vec3d translation = camDir*moveDist;
m_pos += translation;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void LocatorPanWalkRotate::updateRotation(int oglWinCoordX, int oglWinCoordY)
{
CVF_ASSERT(m_camera.notNull());
const double vpPixSizeX = m_camera->viewport()->width();
const double vpPixSizeY = m_camera->viewport()->height();
CVF_ASSERT(vpPixSizeX > 0 && vpPixSizeY > 0);
// Scale the new/last positions to the range [-1.0, 1.0]
const double newPosX = 2.0*(oglWinCoordX/vpPixSizeX) - 1.0;
const double newPosY = 2.0*((vpPixSizeY - oglWinCoordY)/vpPixSizeY) - 1.0;
const double oldPosX = 2.0*(m_lastPosX/vpPixSizeX) - 1.0;
const double oldPosY = 2.0*((vpPixSizeY - m_lastPosY)/vpPixSizeY) - 1.0;
// For now, use hard-coded value for trackball radius and sensitivity
// Sensitivity could be exposed directly, but trackball rotation needs more consideration.
// An idea would be for the user to be able to set an approximate size of the locator's visual representation in world coords,
// and then we could estimate its current size relative to viewport, and then use that as trackball radius.
// See trackballRotation() for some more info on trackballRadius (we've always used 0.8 as an approximation)
const double trackballRadius = 0.8;
const double rotateSensitivity = 1.0;
Mat4d viewMat = m_camera->viewMatrix();
Quatd incrementalRotationQuat = trackballRotation(oldPosX, -oldPosY, newPosX, -newPosY, viewMat, trackballRadius, rotateSensitivity);
// Update rotation quaternion
Mat4d incRotationMatrix = incrementalRotationQuat.toMatrix4();
incRotationMatrix.translatePostMultiply(-m_pos);
incRotationMatrix.translatePreMultiply(m_pos);
Mat4d rotMat = m_rotQuat.toMatrix4();
rotMat = incRotationMatrix*rotMat;
m_rotQuat = Quatd::fromRotationMatrix(rotMat);
}
//--------------------------------------------------------------------------------------------------
/// Compute quaternion rotation
///
/// \param oldPosX x coordinate of the last position of the mouse, in the range [-1.0, 1.0]
/// \param oldPosY y coordinate of the last position of the mouse, in the range [-1.0, 1.0]
/// \param newPosX x coordinate of current position of the mouse, in the range [-1.0, 1.0]
/// \param newPosY y coordinate of current position of the mouse, in the range [-1.0, 1.0]
/// \param currViewMatrix Current transformation matrix. The inverse is used when calculating the rotation
/// \param sensitivityFactor Mouse sensitivity factor
///
/// Simulate a track-ball. Project the points onto the virtual trackball, then figure out the axis
/// of rotation. This is a deformed trackball-- is a trackball in the center, but is deformed into a
/// hyperbolic sheet of rotation away from the center.
//--------------------------------------------------------------------------------------------------
Quatd LocatorPanWalkRotate::trackballRotation(double oldPosX, double oldPosY, double newPosX, double newPosY, const Mat4d& currViewMatrix, double trackballRadius, double sensitivityFactor)
{
// This particular function was chosen after trying out several variations.
// Implemented by Gavin Bell, lots of ideas from Thant Tessman and the August '88
// issue of Siggraph's "Computer Graphics," pp. 121-129.
// This size should really be based on the distance from the center of rotation to the point on
// the object underneath the mouse. That point would then track the mouse as closely as possible.
//const double TRACKBALL_RADIUS = 0.8f;
// Clamp to valid range
oldPosX = Math::clamp(oldPosX, -1.0, 1.0);
oldPosY = Math::clamp(oldPosY, -1.0, 1.0);
newPosX = Math::clamp(newPosX, -1.0, 1.0);
newPosY = Math::clamp(newPosY, -1.0, 1.0);
// First, figure out z-coordinates for projection of P1 and P2 to deformed sphere
Vec3d p1 = projectToSphere(trackballRadius, oldPosX, oldPosY);
Vec3d p2 = projectToSphere(trackballRadius, newPosX, newPosY);
// Axis of rotation is the cross product of P1 and P2
Vec3d a = p1 ^ p2;
// Figure out how much to rotate around that axis.
Vec3d d = p1 - p2;
double t = d.length()/(2.0*trackballRadius);
// Avoid problems with out-of-control values...
t = Math::clamp(t, -1.0, 1.0);
double phi = 2.0*Math::asin(t);
// Scale by sensitivity factor
phi *= sensitivityFactor;
// Use inverted matrix to find rotation axis
Mat4d invMatr = currViewMatrix.getInverted();
a.transformVector(invMatr);
// Get quaternion to be returned by pointer
Quatd quat = Quatd::fromAxisAngle(a, phi);
return quat;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
Vec3d LocatorPanWalkRotate::projectToSphere(double radius, double posX, double posY)
{
double d = Math::sqrt(posX*posX + posY*posY);
if (d < radius*SQRT1_2_D)
{
// Inside sphere
double projectedZ = Math::sqrt(radius*radius - d*d);
return Vec3d(posX, posY, projectedZ);
}
else
{
// On hyperbola
double t = radius/SQRT2_D;
double projectedZ = t*t/d;
return Vec3d(posX, posY, projectedZ);
}
}
} // namespace cvf