mirror of
https://github.com/OPM/ResInsight.git
synced 2025-01-09 23:53:04 -06:00
402 lines
19 KiB
C++
402 lines
19 KiB
C++
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2017- Statoil ASA
|
|
//
|
|
// ResInsight is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
|
// for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "RigNumberOfFloodedPoreVolumesCalculator.h"
|
|
|
|
#include "RiaPorosityModel.h"
|
|
|
|
#include "RigActiveCellInfo.h"
|
|
#include "RigCaseCellResultsData.h"
|
|
#include "RigEclipseCaseData.h"
|
|
#include "RigMainGrid.h"
|
|
#include "RigReservoirBuilderMock.h"
|
|
|
|
#include "RimEclipseCase.h"
|
|
#include "RimReservoirCellResultsStorage.h"
|
|
|
|
#include <vector>
|
|
#include <QString>
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
RigNumberOfFloodedPoreVolumesCalculator::RigNumberOfFloodedPoreVolumesCalculator(RigMainGrid* mainGrid,
|
|
RimEclipseCase* caseToApply,
|
|
const std::vector<QString> tracerNames)
|
|
{
|
|
RigEclipseCaseData* eclipseCaseData = caseToApply->eclipseCaseData();
|
|
RimReservoirCellResultsStorage* gridCellResults = caseToApply->results(RiaDefines::MATRIX_MODEL);
|
|
|
|
RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo(RiaDefines::MATRIX_MODEL);
|
|
size_t numberOfActiveCells = actCellInfo->reservoirCellResultCount();
|
|
|
|
size_t scalarResultIndexPorv = gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "PORV");
|
|
const std::vector<double>* porvResults = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(scalarResultIndexPorv, 0));
|
|
|
|
std::vector<size_t> scalarResultIndexTracers;
|
|
for (QString tracerName : tracerNames)
|
|
{
|
|
scalarResultIndexTracers.push_back(gridCellResults->findOrLoadScalarResult(RiaDefines::DYNAMIC_NATIVE, tracerName));
|
|
}
|
|
std::vector<std::vector<double> > summedTracersAtAllTimesteps;
|
|
|
|
//TODO: Option for Oil and Gas instead of water
|
|
size_t scalarResultIndexFlowrateI = gridCellResults->findOrLoadScalarResult(RiaDefines::DYNAMIC_NATIVE, "FLRWATI+");
|
|
size_t scalarResultIndexFlowrateJ = gridCellResults->findOrLoadScalarResult(RiaDefines::DYNAMIC_NATIVE, "FLRWATJ+");
|
|
size_t scalarResultIndexFlowrateK = gridCellResults->findOrLoadScalarResult(RiaDefines::DYNAMIC_NATIVE, "FLRWATK+");
|
|
|
|
std::vector<const std::vector<double>* > flowrateIatAllTimeSteps;
|
|
std::vector<const std::vector<double>* > flowrateJatAllTimeSteps;
|
|
std::vector<const std::vector<double>* > flowrateKatAllTimeSteps;
|
|
|
|
RigNNCData* nncData = eclipseCaseData->mainGrid()->nncData();
|
|
const std::vector<RigConnection> connections = nncData->connections();
|
|
|
|
//TODO: oil or gas flowrate
|
|
std::vector<const std::vector<double>* > flowrateNNCatAllTimeSteps;
|
|
QString nncConnectionProperty = mainGrid->nncData()->propertyNameFluxWat();
|
|
|
|
|
|
std::vector<double> daysSinceSimulationStart = caseToApply->eclipseCaseData()->results(RiaDefines::MATRIX_MODEL)->daysSinceSimulationStart();
|
|
|
|
for (size_t timeStep = 0; timeStep < daysSinceSimulationStart.size(); timeStep++)
|
|
{
|
|
const std::vector<double>* flowrateI = nullptr;
|
|
if (scalarResultIndexFlowrateI != cvf::UNDEFINED_SIZE_T)
|
|
{
|
|
flowrateI = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(scalarResultIndexFlowrateI,
|
|
timeStep));
|
|
}
|
|
flowrateIatAllTimeSteps.push_back(flowrateI);
|
|
|
|
|
|
const std::vector<double>* flowrateJ = nullptr;
|
|
if (scalarResultIndexFlowrateJ != cvf::UNDEFINED_SIZE_T)
|
|
{
|
|
flowrateJ = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(scalarResultIndexFlowrateJ,
|
|
timeStep));
|
|
}
|
|
flowrateJatAllTimeSteps.push_back(flowrateJ);
|
|
|
|
|
|
const std::vector<double>* flowrateK = nullptr;
|
|
if (scalarResultIndexFlowrateK != cvf::UNDEFINED_SIZE_T)
|
|
{
|
|
flowrateK = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(scalarResultIndexFlowrateK,
|
|
timeStep));
|
|
}
|
|
flowrateKatAllTimeSteps.push_back(flowrateK);
|
|
|
|
const std::vector<double>* connectionFlowrate = nncData->dynamicConnectionScalarResultByName(nncConnectionProperty,
|
|
timeStep);
|
|
flowrateNNCatAllTimeSteps.push_back(connectionFlowrate);
|
|
|
|
|
|
//sum all tracers at current timestep
|
|
std::vector<double> summedTracerValues(numberOfActiveCells);
|
|
for (size_t tracerIndex : scalarResultIndexTracers)
|
|
{
|
|
if (tracerIndex != cvf::UNDEFINED_SIZE_T)
|
|
{
|
|
const std::vector<double>* tracerResult = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(tracerIndex, timeStep));
|
|
|
|
for (size_t i = 0; i < summedTracerValues.size(); i++)
|
|
{
|
|
summedTracerValues[i] += tracerResult->at(i);
|
|
}
|
|
}
|
|
}
|
|
summedTracersAtAllTimesteps.push_back(summedTracerValues);
|
|
|
|
}
|
|
|
|
calculate(mainGrid,
|
|
caseToApply,
|
|
daysSinceSimulationStart,
|
|
porvResults,
|
|
flowrateIatAllTimeSteps,
|
|
flowrateJatAllTimeSteps,
|
|
flowrateKatAllTimeSteps,
|
|
connections,
|
|
flowrateNNCatAllTimeSteps,
|
|
summedTracersAtAllTimesteps);
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
const std::vector<std::vector<double>>& RigNumberOfFloodedPoreVolumesCalculator::numberOfFloodedPorevolumes() const
|
|
{
|
|
return m_cumWinflowPVAllTimeSteps;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
const std::vector<double>& RigNumberOfFloodedPoreVolumesCalculator::numberOfFloodedPorevolumesAtTimeStep(size_t timeStep) const
|
|
{
|
|
return m_cumWinflowPVAllTimeSteps[timeStep];
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigNumberOfFloodedPoreVolumesCalculator::calculate(RigMainGrid* mainGrid,
|
|
RimEclipseCase* caseToApply,
|
|
std::vector<double> daysSinceSimulationStart,
|
|
const std::vector<double>* porvResults,
|
|
std::vector<const std::vector<double>* > flowrateIatAllTimeSteps,
|
|
std::vector<const std::vector<double>* > flowrateJatAllTimeSteps,
|
|
std::vector<const std::vector<double>* > flowrateKatAllTimeSteps,
|
|
const std::vector<RigConnection> connections,
|
|
std::vector<const std::vector<double>* > flowrateNNCatAllTimeSteps,
|
|
std::vector<std::vector<double> > summedTracersAtAllTimesteps)
|
|
{
|
|
//size_t totalNumberOfCells = mainGrid->globalCellArray().size();
|
|
RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo(RiaDefines::MATRIX_MODEL);
|
|
size_t numberOfActiveCells = actCellInfo->reservoirCellResultCount();
|
|
|
|
|
|
std::vector<std::vector<double>> cellQwInAtAllTimeSteps;
|
|
std::vector<double> cellQwInTimeStep0(numberOfActiveCells);
|
|
cellQwInAtAllTimeSteps.push_back(cellQwInTimeStep0);
|
|
|
|
for (size_t timeStep = 1; timeStep < daysSinceSimulationStart.size(); timeStep++)
|
|
{
|
|
std::vector<double> totoalFlowrateIntoCell(numberOfActiveCells); //brukt result celle index / active antall i stedet
|
|
|
|
if (flowrateIatAllTimeSteps[timeStep] != nullptr
|
|
&& flowrateJatAllTimeSteps[timeStep] != nullptr
|
|
&& flowrateKatAllTimeSteps[timeStep] != nullptr)
|
|
|
|
{
|
|
const std::vector<double>* flowrateI = flowrateIatAllTimeSteps[timeStep];
|
|
const std::vector<double>* flowrateJ = flowrateJatAllTimeSteps[timeStep];
|
|
const std::vector<double>* flowrateK = flowrateKatAllTimeSteps[timeStep];
|
|
|
|
distributeNeighbourCellFlow(mainGrid,
|
|
caseToApply,
|
|
summedTracersAtAllTimesteps[timeStep],
|
|
flowrateI,
|
|
flowrateJ,
|
|
flowrateK,
|
|
totoalFlowrateIntoCell);
|
|
}
|
|
|
|
const std::vector<double>* flowrateNNC = flowrateNNCatAllTimeSteps[timeStep];
|
|
|
|
distributeNNCflow(connections,
|
|
caseToApply,
|
|
summedTracersAtAllTimesteps[timeStep],
|
|
flowrateNNC,
|
|
totoalFlowrateIntoCell);
|
|
|
|
std::vector<double> CellQwIn(numberOfActiveCells);
|
|
|
|
double daysSinceSimStartNow = daysSinceSimulationStart[timeStep];
|
|
double daysSinceSimStartLastTimeStep = daysSinceSimulationStart[timeStep - 1];
|
|
double deltaT = daysSinceSimStartNow - daysSinceSimStartLastTimeStep;
|
|
|
|
for (size_t cellResultIndex = 0; cellResultIndex < numberOfActiveCells; cellResultIndex++)
|
|
{
|
|
CellQwIn[cellResultIndex] = cellQwInAtAllTimeSteps[timeStep - 1][cellResultIndex]
|
|
+ (totoalFlowrateIntoCell[cellResultIndex]) * deltaT;
|
|
}
|
|
cellQwInAtAllTimeSteps.push_back(CellQwIn);
|
|
|
|
}
|
|
|
|
//Using porv only for active cells
|
|
std::vector<double> porvResultsActiveCellsOnly;
|
|
for (size_t globalCellIndex = 0; globalCellIndex < mainGrid->globalCellArray().size(); globalCellIndex++)
|
|
{
|
|
if (actCellInfo->isActive(globalCellIndex))
|
|
{
|
|
porvResultsActiveCellsOnly.push_back(porvResults->at(globalCellIndex));
|
|
}
|
|
}
|
|
CVF_ASSERT(porvResultsActiveCellsOnly.size() == numberOfActiveCells);
|
|
|
|
|
|
//Calculate number-of-cell-PV flooded
|
|
std::vector<double> cumWinflowPVTimeStep0(numberOfActiveCells);
|
|
m_cumWinflowPVAllTimeSteps.clear();
|
|
m_cumWinflowPVAllTimeSteps.push_back(cumWinflowPVTimeStep0);
|
|
|
|
for (size_t timeStep = 1; timeStep < daysSinceSimulationStart.size(); timeStep++)
|
|
{
|
|
std::vector<double> cumWinflowPV(numberOfActiveCells);
|
|
for (size_t cellResultIndex = 0; cellResultIndex < numberOfActiveCells; cellResultIndex++)
|
|
{
|
|
cumWinflowPV[cellResultIndex] = cellQwInAtAllTimeSteps[timeStep][cellResultIndex]
|
|
/ porvResultsActiveCellsOnly[cellResultIndex];
|
|
}
|
|
m_cumWinflowPVAllTimeSteps.push_back(cumWinflowPV);
|
|
}
|
|
|
|
//TODO: Only for testing
|
|
m_cellQwInAtAllTimeSteps = cellQwInAtAllTimeSteps;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigNumberOfFloodedPoreVolumesCalculator::distributeNNCflow(std::vector<RigConnection> connections,
|
|
RimEclipseCase* caseToApply,
|
|
std::vector<double> summedTracerValues,
|
|
const std::vector<double>* flowrateNNC,
|
|
std::vector<double> &flowrateIntoCell)
|
|
{
|
|
RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo(RiaDefines::MATRIX_MODEL);
|
|
|
|
|
|
for (size_t connectionIndex = 0; connectionIndex < connections.size(); connectionIndex++)
|
|
{
|
|
RigConnection connection = connections[connectionIndex];
|
|
double connectionValue = flowrateNNC->at(connectionIndex);
|
|
|
|
size_t cell1Index = connection.m_c1GlobIdx;
|
|
size_t cell1ResultIndex = actCellInfo->cellResultIndex(cell1Index);
|
|
|
|
size_t cell2Index = connection.m_c2GlobIdx;
|
|
size_t cell2ResultIndex = actCellInfo->cellResultIndex(cell2Index);
|
|
|
|
if (connectionValue > 0)
|
|
{
|
|
//Flow out of cell with cell1index, into cell cell2index
|
|
flowrateIntoCell[cell2ResultIndex] += connectionValue * summedTracerValues[cell1ResultIndex];
|
|
}
|
|
else if (connectionValue < 0)
|
|
{
|
|
//flow out of cell with cell2index, into cell cell1index
|
|
flowrateIntoCell[cell1ResultIndex] += connectionValue * summedTracerValues[cell2ResultIndex];
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigNumberOfFloodedPoreVolumesCalculator::distributeNeighbourCellFlow(RigMainGrid* mainGrid,
|
|
RimEclipseCase* caseToApply,
|
|
std::vector<double> summedTracerValues,
|
|
const std::vector<double>* flrWatResultI,
|
|
const std::vector<double>* flrWatResultJ,
|
|
const std::vector<double>* flrWatResultK,
|
|
std::vector<double> &totalFlowrateIntoCell)
|
|
{
|
|
RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo(RiaDefines::MATRIX_MODEL);
|
|
|
|
for (size_t globalCellIndex = 0; globalCellIndex < mainGrid->globalCellArray().size(); globalCellIndex++)
|
|
{
|
|
if (!actCellInfo->isActive(globalCellIndex)) continue;
|
|
|
|
const RigCell& cell = mainGrid->globalCellArray()[globalCellIndex];
|
|
RigGridBase* hostGrid = cell.hostGrid();
|
|
size_t gridLocalCellIndex = cell.gridLocalCellIndex();
|
|
|
|
size_t cellResultIndex = actCellInfo->cellResultIndex(globalCellIndex);
|
|
|
|
size_t i, j, k;
|
|
hostGrid->ijkFromCellIndex(gridLocalCellIndex, &i, &j, &k);
|
|
|
|
if (i < (hostGrid->cellCountI()-1))
|
|
{
|
|
size_t gridLocalCellIndexPosINeighbour = hostGrid->cellIndexFromIJK(i + 1, j, k);
|
|
size_t reservoirCellIndexPosINeighbour = hostGrid->reservoirCellIndex(gridLocalCellIndexPosINeighbour);
|
|
size_t cellResultIndexPosINeighbour = actCellInfo->cellResultIndex(reservoirCellIndexPosINeighbour);
|
|
|
|
if (!actCellInfo->isActive(reservoirCellIndexPosINeighbour)) continue;
|
|
|
|
if (hostGrid->cell(gridLocalCellIndexPosINeighbour).subGrid() != NULL)
|
|
{
|
|
//subgrid exists in cell, will be handled though NNCs
|
|
continue;
|
|
}
|
|
|
|
if (flrWatResultI->at(cellResultIndex) > 0)
|
|
{
|
|
//Flow out of cell globalCellIndex, into cell i+1
|
|
totalFlowrateIntoCell[cellResultIndexPosINeighbour] += flrWatResultI->at(cellResultIndex) * summedTracerValues[cellResultIndex];
|
|
}
|
|
else if (flrWatResultI->at(cellResultIndex) < 0)
|
|
{
|
|
//Flow into cell globelCellIndex, from cell i+1
|
|
totalFlowrateIntoCell[cellResultIndex] += (-1) * flrWatResultI->at(cellResultIndex) * summedTracerValues[cellResultIndexPosINeighbour];
|
|
}
|
|
}
|
|
|
|
if (j < (hostGrid->cellCountJ()-1))
|
|
{
|
|
size_t gridLocalCellIndexPosJNeighbour = hostGrid->cellIndexFromIJK(i, j + 1, k);
|
|
size_t reservoirCellIndexPosJNeighbour = hostGrid->reservoirCellIndex(gridLocalCellIndexPosJNeighbour);
|
|
size_t cellResultIndexPosJNeighbour = actCellInfo->cellResultIndex(reservoirCellIndexPosJNeighbour);
|
|
|
|
if (!actCellInfo->isActive(reservoirCellIndexPosJNeighbour)) continue;
|
|
|
|
if (hostGrid->cell(gridLocalCellIndexPosJNeighbour).subGrid() != NULL)
|
|
{
|
|
//subgrid exists in cell, will be handled though NNCs
|
|
continue;
|
|
}
|
|
|
|
|
|
if (flrWatResultJ->at(cellResultIndex) > 0)
|
|
{
|
|
//Flow out of cell globalCellIndex, into cell i+1
|
|
totalFlowrateIntoCell[cellResultIndexPosJNeighbour] += flrWatResultJ->at(cellResultIndex) * summedTracerValues[cellResultIndex];
|
|
}
|
|
else if (flrWatResultJ->at(cellResultIndex) < 0)
|
|
{
|
|
//Flow into cell globelCellIndex, from cell i+1
|
|
totalFlowrateIntoCell[cellResultIndex] += flrWatResultJ->at(cellResultIndex) * summedTracerValues[cellResultIndexPosJNeighbour];
|
|
}
|
|
}
|
|
|
|
if (k < (hostGrid->cellCountK()-1))
|
|
{
|
|
size_t gridLocalCellIndexPosKNeighbour = hostGrid->cellIndexFromIJK(i, j, k + 1);
|
|
size_t reservoirCellIndexPosKNeighbour = hostGrid->reservoirCellIndex(gridLocalCellIndexPosKNeighbour);
|
|
size_t cellResultIndexPosKNeighbour = actCellInfo->cellResultIndex(reservoirCellIndexPosKNeighbour);
|
|
|
|
if (!actCellInfo->isActive(reservoirCellIndexPosKNeighbour)) continue;
|
|
|
|
if (hostGrid->cell(gridLocalCellIndexPosKNeighbour).subGrid() != NULL)
|
|
{
|
|
//subgrid exists in cell, will be handled though NNCs
|
|
continue;
|
|
}
|
|
|
|
if (flrWatResultK->at(cellResultIndex) > 0)
|
|
{
|
|
//Flow out of cell globalCellIndex, into cell i+1
|
|
totalFlowrateIntoCell[cellResultIndexPosKNeighbour] += flrWatResultK->at(cellResultIndex) * summedTracerValues[cellResultIndex];
|
|
}
|
|
else if (flrWatResultK->at(cellResultIndex) < 0)
|
|
{
|
|
//Flow into cell globelCellIndex, from cell i+1
|
|
totalFlowrateIntoCell[cellResultIndex] += flrWatResultK->at(cellResultIndex) * summedTracerValues[cellResultIndexPosKNeighbour];
|
|
}
|
|
}
|
|
}
|
|
}
|