Files
ResInsight/ApplicationLibCode/ReservoirDataModel/RigPolygonTools.cpp

410 lines
14 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2025 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigPolygonTools.h"
#include "cvfGeometryTools.h"
#include <optional>
#include <stack>
#include <utility>
namespace RigPolygonTools
{
namespace internal
{
// Function to check if a point is valid and within bounds
bool isValid( int x, int y, int rows, int cols, const IntegerImage& image, const IntegerImage& visited )
{
return x >= 0 && x < rows && y >= 0 && y < cols && image[x][y] == 1 && !visited[x][y];
}
bool isValidImage( const IntegerImage& image )
{
if ( image.empty() ) return false;
auto rowSize = image[0].size();
for ( const auto& row : image )
{
if ( row.size() != rowSize ) return false;
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void floodFill( IntegerImage& image, int x, int y, int oldColor, int newColor )
{
if ( !isValidImage( image ) ) return;
auto rows = static_cast<int>( image.size() );
auto cols = static_cast<int>( image[0].size() );
std::stack<Point> stack;
stack.push( { x, y } );
while ( !stack.empty() )
{
auto [cx, cy] = stack.top();
stack.pop();
if ( cx < 0 || cy < 0 || cx >= rows || cy >= cols || image[cx][cy] != oldColor ) continue;
image[cx][cy] = newColor;
stack.push( { cx + 1, cy } );
stack.push( { cx - 1, cy } );
stack.push( { cx, cy + 1 } );
stack.push( { cx, cy - 1 } );
}
}
// Function to check if a point is on a line segment (edge of the polygon)
bool isOnSegment( Point p, Point p1, Point p2 )
{
int x = p.first, y = p.second;
int x1 = p1.first, y1 = p1.second;
int x2 = p2.first, y2 = p2.second;
// Check if the point (x, y) lies between (x1, y1) and (x2, y2)
return ( ( x >= std::min( x1, x2 ) && x <= std::max( x1, x2 ) ) && ( y >= std::min( y1, y2 ) && y <= std::max( y1, y2 ) ) &&
( ( x2 - x1 ) * ( y - y1 ) == ( y2 - y1 ) * ( x - x1 ) ) ); // Collinearity check
}
// Check if a point is inside a polygon using the Ray-Casting Algorithm
bool isInsidePolygon( const Point& p, const std::vector<Point>& polygon )
{
int n = static_cast<int>( polygon.size() );
int count = 0;
for ( int i = 0; i < n; i++ )
{
auto p1 = polygon[i];
auto p2 = polygon[( i + 1 ) % n]; // Next vertex (looping back to first at end)
// Check if point is exactly on an edge
if ( isOnSegment( p, p1, p2 ) ) return true;
// Check if point is between y-bounds of edge
if ( ( p1.second > p.second ) != ( p2.second > p.second ) )
{
// Compute intersection point of the edge with horizontal line at p.y
double xIntersect = p1.first + (double)( p.second - p1.second ) * ( p2.first - p1.first ) / ( p2.second - p1.second );
if ( p.first < xIntersect )
{
count++;
}
}
}
return ( count % 2 ) == 1; // Odd count means inside, even means outside
}
}; // namespace internal
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
IntegerImage erode( IntegerImage image, int kernelSize )
{
if ( !internal::isValidImage( image ) ) return {};
if ( kernelSize <= 0 ) return {};
auto rows = static_cast<int>( image.size() );
auto cols = static_cast<int>( image[0].size() );
int offset = kernelSize / 2;
IntegerImage eroded( rows, std::vector<int>( cols, 0 ) );
for ( int i = offset; i < rows - offset; ++i )
{
for ( int j = offset; j < cols - offset; ++j )
{
bool erodePixel = true;
for ( int ki = -offset; ki <= offset; ++ki )
{
for ( int kj = -offset; kj <= offset; ++kj )
{
if ( image[i + ki][j + kj] == 0 )
{
erodePixel = false;
break;
}
}
if ( !erodePixel ) break;
}
eroded[i][j] = erodePixel ? 1 : 0;
}
}
return eroded;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
IntegerImage dilate( IntegerImage image, int kernelSize )
{
if ( !internal::isValidImage( image ) ) return {};
if ( kernelSize <= 0 ) return {};
auto rows = static_cast<int>( image.size() );
auto cols = static_cast<int>( image[0].size() );
int offset = kernelSize / 2;
IntegerImage dilated( rows, std::vector<int>( cols, 0 ) );
for ( int i = offset; i < rows - offset; ++i )
{
for ( int j = offset; j < cols - offset; ++j )
{
bool dilatePixel = false;
for ( int ki = -offset; ki <= offset; ++ki )
{
for ( int kj = -offset; kj <= offset; ++kj )
{
if ( image[i + ki][j + kj] == 1 )
{
dilatePixel = true;
break;
}
}
if ( dilatePixel ) break;
}
dilated[i][j] = dilatePixel ? 1 : 0;
}
}
return dilated;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
IntegerImage fillInterior( IntegerImage sourceImage )
{
if ( !internal::isValidImage( sourceImage ) ) return {};
auto image = sourceImage;
auto rows = static_cast<int>( image.size() );
auto cols = static_cast<int>( image[0].size() );
// Flood fill the exterior (starting from the borders)
for ( int i = 0; i < rows; ++i )
{
if ( image[i][0] == 0 ) internal::floodFill( image, i, 0, 0, -1 );
if ( image[i][cols - 1] == 0 ) internal::floodFill( image, i, cols - 1, 0, -1 );
}
for ( int j = 0; j < cols; ++j )
{
if ( image[0][j] == 0 ) internal::floodFill( image, 0, j, 0, -1 );
if ( image[rows - 1][j] == 0 ) internal::floodFill( image, rows - 1, j, 0, -1 );
}
// Fill interior holes (remaining 0s)
for ( int i = 0; i < rows; ++i )
{
for ( int j = 0; j < cols; ++j )
{
if ( image[i][j] == 0 ) image[i][j] = 1;
}
}
// Restore the exterior
for ( int i = 0; i < rows; ++i )
{
for ( int j = 0; j < cols; ++j )
{
if ( image[i][j] == -1 ) image[i][j] = 0;
}
}
return image;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<Point> boundary( const IntegerImage& image )
{
if ( !internal::isValidImage( image ) ) return {};
std::vector<Point> boundaries;
// Get dimensions of the image
int rows = static_cast<int>( image.size() );
int cols = static_cast<int>( image[0].size() );
// Direction vectors for clockwise search (8-connectivity)
const std::vector<Point> directions = { { -1, 0 }, { -1, 1 }, { 0, 1 }, { 1, 1 }, { 1, 0 }, { 1, -1 }, { 0, -1 }, { -1, -1 } };
// Helper lambda to check if a pixel is a valid boundary pixel
auto isBoundaryPixel = [&]( int x, int y )
{
if ( x < 0 || x >= rows || y < 0 || y >= cols || image[x][y] == 0 ) return false;
// Check if it's adjacent to a background pixel
for ( const auto& [dx, dy] : directions )
{
int nx = x + dx, ny = y + dy;
if ( nx < 0 || nx >= rows || ny < 0 || ny >= cols || image[nx][ny] == 0 )
{
return true;
}
}
return false;
};
// Find the starting boundary pixel
Point start( -1, -1 );
for ( int row = 0; row < rows; ++row )
{
for ( int col = 0; col < cols; ++col )
{
if ( isBoundaryPixel( row, col ) )
{
start = { row, col };
break;
}
}
if ( start.first != -1 ) break;
}
if ( start.first == -1 ) return boundaries; // No boundary found
// Contour following algorithm
Point current = start;
int direction = 0; // Start search direction (arbitrary)
do
{
boundaries.push_back( current );
bool foundNext = false;
// Look for the next boundary pixel in a clockwise direction
for ( int i = 0; i < 8; ++i )
{
int newDir = ( direction + i ) % 8;
int nx = current.first + directions[newDir].first;
int ny = current.second + directions[newDir].second;
if ( isBoundaryPixel( nx, ny ) )
{
current = { nx, ny };
direction = ( newDir + 6 ) % 8; // Adjust direction for next search
foundNext = true;
break;
}
}
// If no next pixel is found, the boundary is invalid or incomplete
if ( !foundNext ) break;
} while ( current != start ); // Stop when we loop back to the start
return boundaries;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigPolygonTools::IntegerImage assignValueInsidePolygon( IntegerImage image, const std::vector<Point>& polygon, int value )
{
if ( !internal::isValidImage( image ) ) return {};
auto rows = static_cast<int>( image.size() );
auto cols = static_cast<int>( image[0].size() );
for ( int i = 0; i < rows; ++i )
{
for ( int j = 0; j < cols; ++j )
{
if ( internal::isInsidePolygon( { i, j }, polygon ) )
{
image[i][j] = value;
}
}
}
return image;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double area( const std::vector<Point>& polygon )
{
int n = static_cast<int>( polygon.size() );
if ( n < 3 ) return 0.0; // A polygon must have at least 3 points
double area = 0.0;
for ( int i = 0; i < n; i++ )
{
int j = ( i + 1 ) % n; // Next vertex, wrapping around at the end
area += polygon[i].first * polygon[j].second;
area -= polygon[j].first * polygon[i].second;
}
return std::fabs( area ) / 2.0;
}
//--------------------------------------------------------------------------------------------------
/// Ramer-Douglas-Peucker simplification algorithm
///
/// https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
//--------------------------------------------------------------------------------------------------
void simplifyPolygon( std::vector<cvf::Vec3d>& vertices, double epsilon )
{
// If the polygon has fewer than 3 vertices, it cannot be simplified.
if ( vertices.size() < 3 ) return;
// Find the point with the maximum perpendicular distance from the line connecting the endpoints.
std::optional<std::pair<size_t, double>> maxDistPoint;
for ( size_t i = 1; i < vertices.size() - 1; ++i )
{
const cvf::Vec3d& point = vertices[i];
cvf::Vec3d projected = cvf::GeometryTools::projectPointOnLine( vertices.front(), vertices.back(), point );
double distance = ( projected - point ).length();
if ( !maxDistPoint || distance > maxDistPoint->second )
{
maxDistPoint = std::make_pair( i, distance );
}
}
// If the maximum distance exceeds epsilon, split and simplify recursively.
if ( maxDistPoint && maxDistPoint->second > epsilon )
{
size_t splitIndex = maxDistPoint->first;
// Divide the vertices into two segments.
std::vector<cvf::Vec3d> segment1( vertices.begin(), vertices.begin() + splitIndex + 1 );
std::vector<cvf::Vec3d> segment2( vertices.begin() + splitIndex, vertices.end() );
// Recursively simplify both segments.
simplifyPolygon( segment1, epsilon );
simplifyPolygon( segment2, epsilon );
// Combine the simplified segments, avoiding duplication at the split point.
vertices = std::move( segment1 );
vertices.pop_back(); // Remove duplicate at the split point.
vertices.insert( vertices.end(), segment2.begin(), segment2.end() );
}
else
{
// If no point exceeds the threshold, reduce to endpoints.
vertices = { vertices.front(), vertices.back() };
}
}
} // namespace RigPolygonTools