ResInsight/ApplicationLibCode/ReservoirDataModel/RigEclipseCrossPlotDataExtractor.cpp
Magne Sjaastad f8c5cf389f
clang-format: Set column width to 140
* Set column width to 140
* Use c++20
* Remove redundant virtual
2023-02-26 10:48:40 +01:00

162 lines
6.9 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2019- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigEclipseCrossPlotDataExtractor.h"
#include "RiaQDateTimeTools.h"
#include "RigActiveCellInfo.h"
#include "RigActiveCellsResultAccessor.h"
#include "RigCaseCellResultsData.h"
#include "RigEclipseCaseData.h"
#include "RigEclipseResultAddress.h"
#include "RigFormationNames.h"
#include "RigMainGrid.h"
#include <memory>
#include <set>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigEclipseCrossPlotResult RigEclipseCrossPlotDataExtractor::extract( RigEclipseCaseData* caseData,
int resultTimeStep,
const RigEclipseResultAddress& xAddress,
const RigEclipseResultAddress& yAddress,
RigGridCrossPlotCurveGrouping groupingType,
const RigEclipseResultAddress& groupAddress,
std::map<int, cvf::UByteArray> timeStepCellVisibilityMap )
{
RigEclipseCrossPlotResult result;
RigCaseCellResultsData* resultData = caseData->results( RiaDefines::PorosityModelType::MATRIX_MODEL );
if ( !resultData ) return result;
const std::vector<std::vector<double>>* catValuesForAllSteps = nullptr;
if ( xAddress.isValid() && yAddress.isValid() )
{
RigActiveCellInfo* activeCellInfo = resultData->activeCellInfo();
const RigMainGrid* mainGrid = caseData->mainGrid();
if ( !resultData->ensureKnownResultLoaded( xAddress ) )
{
return result;
}
if ( !resultData->ensureKnownResultLoaded( yAddress ) )
{
return result;
}
const std::vector<std::vector<double>>& xValuesForAllSteps = resultData->cellScalarResults( xAddress );
const std::vector<std::vector<double>>& yValuesForAllSteps = resultData->cellScalarResults( yAddress );
if ( groupingType == GROUP_BY_RESULT && groupAddress.isValid() )
{
if ( resultData->ensureKnownResultLoaded( groupAddress ) )
{
catValuesForAllSteps = &resultData->cellScalarResults( groupAddress );
}
}
std::set<int> timeStepsToInclude;
if ( resultTimeStep == -1 )
{
size_t nStepsInData = std::max( xValuesForAllSteps.size(), yValuesForAllSteps.size() );
bool xValid = xValuesForAllSteps.size() == 1u || xValuesForAllSteps.size() == nStepsInData;
bool yValid = yValuesForAllSteps.size() == 1u || yValuesForAllSteps.size() == nStepsInData;
if ( !( xValid && yValid ) ) return result;
for ( size_t i = 0; i < nStepsInData; ++i )
{
timeStepsToInclude.insert( (int)i );
}
}
else
{
timeStepsToInclude.insert( static_cast<size_t>( resultTimeStep ) );
}
for ( int timeStep : timeStepsToInclude )
{
const cvf::UByteArray* cellVisibility = nullptr;
if ( timeStepCellVisibilityMap.count( timeStep ) )
{
cellVisibility = &timeStepCellVisibilityMap[timeStep];
}
int xIndex = timeStep >= (int)xValuesForAllSteps.size() ? 0 : timeStep;
int yIndex = timeStep >= (int)yValuesForAllSteps.size() ? 0 : timeStep;
RigActiveCellsResultAccessor xAccessor( mainGrid, &xValuesForAllSteps[xIndex], activeCellInfo );
RigActiveCellsResultAccessor yAccessor( mainGrid, &yValuesForAllSteps[yIndex], activeCellInfo );
std::unique_ptr<RigActiveCellsResultAccessor> catAccessor;
if ( catValuesForAllSteps )
{
int catIndex = timeStep >= (int)catValuesForAllSteps->size() ? 0 : timeStep;
catAccessor.reset( new RigActiveCellsResultAccessor( mainGrid, &( catValuesForAllSteps->at( catIndex ) ), activeCellInfo ) );
}
for ( size_t globalCellIdx = 0; globalCellIdx < activeCellInfo->reservoirCellCount(); ++globalCellIdx )
{
if ( cellVisibility && !( *cellVisibility )[globalCellIdx] ) continue;
double xValue = xAccessor.cellScalarGlobIdx( globalCellIdx );
double yValue = yAccessor.cellScalarGlobIdx( globalCellIdx );
if ( xValue == HUGE_VAL || yValue == HUGE_VAL ) continue;
result.xValues.push_back( xValue );
result.yValues.push_back( yValue );
if ( groupingType == GROUP_BY_TIME )
{
result.groupValuesDiscrete.push_back( timeStep );
}
else if ( groupingType == GROUP_BY_FORMATION )
{
const RigFormationNames* activeFormationNames = resultData->activeFormationNames();
if ( activeFormationNames )
{
int category = 0;
size_t i( cvf::UNDEFINED_SIZE_T ), j( cvf::UNDEFINED_SIZE_T ), k( cvf::UNDEFINED_SIZE_T );
if ( mainGrid->ijkFromCellIndex( globalCellIdx, &i, &j, &k ) )
{
category = activeFormationNames->formationIndexFromKLayerIdx( k );
}
result.groupValuesDiscrete.push_back( category );
}
}
else if ( groupingType == GROUP_BY_RESULT )
{
double catValue = HUGE_VAL;
if ( catAccessor )
{
catValue = catAccessor->cellScalarGlobIdx( globalCellIdx );
}
result.groupValuesContinuous.push_back( catValue );
}
}
}
}
return result;
}