ResInsight/ApplicationLibCode/ReservoirDataModel/RigFishbonesGeometry.cpp
2023-05-15 15:43:01 +02:00

203 lines
8.0 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigFishbonesGeometry.h"
#include "RigWellPath.h"
#include "RimFishbones.h"
#include "RimWellPath.h"
#include "cvfAssert.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFisbonesGeometry::RigFisbonesGeometry( RimFishbones* fishbonesSub )
: m_fishbonesSub( fishbonesSub )
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::pair<cvf::Vec3d, double>> RigFisbonesGeometry::coordsForLateral( size_t subIndex, size_t lateralIndex ) const
{
CVF_ASSERT( lateralIndex < m_fishbonesSub->lateralLengths().size() );
const auto& subAndLateralIndices = m_fishbonesSub->installedLateralIndices();
bool found = std::find( subAndLateralIndices.begin(), subAndLateralIndices.end(), std::make_pair( subIndex, lateralIndex ) ) !=
subAndLateralIndices.end();
CVF_ASSERT( found );
cvf::Vec3d position;
cvf::Vec3d lateralInitialDirection;
cvf::Mat4d buildAngleRotationMatrix;
computeLateralPositionAndOrientation( subIndex, lateralIndex, &position, &lateralInitialDirection, &buildAngleRotationMatrix );
return computeCoordsAlongLateral( m_fishbonesSub->measuredDepth( subIndex ),
m_fishbonesSub->lateralLengths()[lateralIndex],
position,
lateralInitialDirection,
buildAngleRotationMatrix );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFisbonesGeometry::computeLateralPositionAndOrientation( size_t subIndex,
size_t lateralIndex,
cvf::Vec3d* startCoord,
cvf::Vec3d* startDirection,
cvf::Mat4d* buildAngleMatrix ) const
{
auto wellPath = m_fishbonesSub->firstAncestorOrThisOfTypeAsserted<RimWellPath>();
auto wellPathGeometry = wellPath->wellPathGeometry();
if ( !wellPathGeometry ) return;
double measuredDepth = m_fishbonesSub->measuredDepth( subIndex );
cvf::Vec3d position = wellPathGeometry->interpolatedPointAlongWellPath( measuredDepth );
cvf::Mat4d buildAngleMat;
cvf::Vec3d lateralDirection;
{
cvf::Vec3d lateralInitialDirection = cvf::Vec3d::Z_AXIS;
cvf::Vec3d p1 = cvf::Vec3d::UNDEFINED;
cvf::Vec3d p2 = cvf::Vec3d::UNDEFINED;
wellPathGeometry->twoClosestPoints( position, &p1, &p2 );
CVF_ASSERT( !p1.isUndefined() && !p2.isUndefined() );
cvf::Vec3d alongWellPath = ( p2 - p1 ).getNormalized();
if ( RigFisbonesGeometry::closestMainAxis( alongWellPath ) == cvf::Vec3d::Z_AXIS )
{
// Use Y-AXIS if well path is heading close to Z-AXIS
lateralInitialDirection = cvf::Vec3d::Y_AXIS;
}
{
double initialRotationAngle = m_fishbonesSub->rotationAngle( subIndex );
double lateralOffsetDegrees = 360.0 / m_fishbonesSub->lateralLengths().size();
double lateralOffsetRadians = cvf::Math::toRadians( initialRotationAngle + lateralOffsetDegrees * lateralIndex );
cvf::Mat4d lateralOffsetMatrix = cvf::Mat4d::fromRotation( alongWellPath, lateralOffsetRadians );
lateralInitialDirection = lateralInitialDirection.getTransformedVector( lateralOffsetMatrix );
}
cvf::Vec3d rotationAxis;
rotationAxis.cross( alongWellPath, lateralInitialDirection );
double exitAngleRadians = cvf::Math::toRadians( m_fishbonesSub->exitAngle() );
cvf::Mat4d lateralRotationMatrix = cvf::Mat4d::fromRotation( rotationAxis, exitAngleRadians );
lateralDirection = alongWellPath.getTransformedVector( lateralRotationMatrix );
double buildAngleRadians = cvf::Math::toRadians( m_fishbonesSub->buildAngle() );
buildAngleMat = cvf::Mat4d::fromRotation( rotationAxis, buildAngleRadians );
}
*startCoord = position;
*startDirection = lateralDirection;
*buildAngleMatrix = buildAngleMat;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::pair<cvf::Vec3d, double>> RigFisbonesGeometry::computeCoordsAlongLateral( double startMeasuredDepth,
double lateralLength,
const cvf::Vec3d& startCoord,
const cvf::Vec3d& startDirection,
const cvf::Mat4d& buildAngleMatrix )
{
std::vector<std::pair<cvf::Vec3d, double>> coords;
cvf::Vec3d lateralDirection( startDirection );
// Compute coordinates along the lateral by modifying the lateral direction by the build angle for
// every unit vector along the lateral
cvf::Vec3d accumulatedPosition = startCoord;
double measuredDepth = startMeasuredDepth;
double accumulatedLength = 0.0;
while ( accumulatedLength < lateralLength )
{
coords.push_back( std::make_pair( accumulatedPosition, measuredDepth ) );
double delta = 1.0;
if ( lateralLength - accumulatedLength < 1.0 )
{
delta = lateralLength - accumulatedLength;
}
accumulatedPosition += delta * lateralDirection;
// Modify the lateral direction by the build angle for each unit vector
lateralDirection = lateralDirection.getTransformedVector( buildAngleMatrix );
accumulatedLength += delta;
measuredDepth += delta;
}
coords.push_back( std::make_pair( accumulatedPosition, measuredDepth ) );
return coords;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RigFisbonesGeometry::closestMainAxis( const cvf::Vec3d& vec )
{
size_t maxComponent = 0;
double maxValue = cvf::Math::abs( vec.x() );
if ( cvf::Math::abs( vec.y() ) > maxValue )
{
maxComponent = 1;
maxValue = cvf::Math::abs( vec.y() );
}
if ( cvf::Math::abs( vec.z() ) > maxValue )
{
maxComponent = 2;
}
if ( maxComponent == 0 )
{
return cvf::Vec3d::X_AXIS;
}
else if ( maxComponent == 1 )
{
return cvf::Vec3d::Y_AXIS;
}
else
{
return cvf::Vec3d::Z_AXIS;
}
}