mirror of
https://github.com/OPM/ResInsight.git
synced 2025-01-08 15:14:07 -06:00
1494 lines
69 KiB
C++
1494 lines
69 KiB
C++
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) Statoil ASA
|
|
// Copyright (C) Ceetron Solutions AS
|
|
//
|
|
// ResInsight is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
|
// for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//==================================================================================================
|
|
///
|
|
//==================================================================================================
|
|
#include "RigGeoMechWellLogExtractor.h"
|
|
|
|
#include "RiaDefines.h"
|
|
#include "RiaLogging.h"
|
|
#include "RiaResultNames.h"
|
|
#include "RiaWeightedMeanCalculator.h"
|
|
|
|
#include "RigFemPart.h"
|
|
#include "RigFemPartCollection.h"
|
|
#include "RigFemPartResultsCollection.h"
|
|
#include "RigFemTypes.h"
|
|
#include "RigGeoMechBoreHoleStressCalculator.h"
|
|
#include "RigGeoMechCaseData.h"
|
|
|
|
#include "RiaWellLogUnitTools.h"
|
|
#include "RigWellLogExtractionTools.h"
|
|
#include "RigWellPath.h"
|
|
#include "RigWellPathGeometryTools.h"
|
|
#include "RigWellPathIntersectionTools.h"
|
|
|
|
#include "cafTensor3.h"
|
|
#include "cvfGeometryTools.h"
|
|
#include "cvfMath.h"
|
|
|
|
#include <QDebug>
|
|
#include <QPolygonF>
|
|
|
|
#include <type_traits>
|
|
|
|
const double RigGeoMechWellLogExtractor::PURE_WATER_DENSITY_GCM3 = 1.0; // g / cm^3
|
|
const double RigGeoMechWellLogExtractor::GRAVITY_ACCEL = 9.81; // m / s^2
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
RigGeoMechWellLogExtractor::RigGeoMechWellLogExtractor( gsl::not_null<RigGeoMechCaseData*> aCase,
|
|
int partId,
|
|
gsl::not_null<const RigWellPath*> wellpath,
|
|
const std::string& wellCaseErrorMsgName )
|
|
: RigWellLogExtractor( wellpath, wellCaseErrorMsgName )
|
|
, m_caseData( aCase )
|
|
, m_partId( partId )
|
|
{
|
|
m_valid = ( ( partId < m_caseData->femParts()->partCount() ) && ( partId >= 0 ) );
|
|
if ( !valid() ) return;
|
|
|
|
calculateIntersection();
|
|
|
|
m_waterDepth = calculateWaterDepth();
|
|
|
|
for ( RigWbsParameter parameter : RigWbsParameter::allParameters() )
|
|
{
|
|
m_parameterSources[parameter] = parameter.sources().front();
|
|
m_lasFileValues[parameter] = std::vector<std::pair<double, double>>();
|
|
m_userDefinedValues[parameter] = std::numeric_limits<double>::infinity();
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::performCurveDataSmoothing( int timeStepIndex,
|
|
int frameIndex,
|
|
std::vector<double>* mds,
|
|
std::vector<double>* tvds,
|
|
std::vector<double>* values,
|
|
const double smoothingTreshold )
|
|
{
|
|
CVF_ASSERT( mds && tvds && values );
|
|
|
|
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
|
|
|
|
RigFemResultAddress shAddr( RIG_ELEMENT_NODAL, "ST", "S3" );
|
|
RigFemResultAddress porBarResAddr( RIG_ELEMENT_NODAL, "POR-Bar", "" );
|
|
|
|
const std::vector<float>& unscaledShValues = resultCollection->resultValues( shAddr, m_partId, timeStepIndex, frameIndex );
|
|
const std::vector<float>& porePressures = resultCollection->resultValues( porBarResAddr, m_partId, timeStepIndex, frameIndex );
|
|
|
|
std::vector<float> interfaceShValues = interpolateInterfaceValues( shAddr, timeStepIndex, frameIndex, unscaledShValues );
|
|
std::vector<float> interfacePorePressures = interpolateInterfaceValues( porBarResAddr, timeStepIndex, frameIndex, porePressures );
|
|
|
|
std::vector<double> interfaceShValuesDbl( interfaceShValues.size(), std::numeric_limits<double>::infinity() );
|
|
std::vector<double> interfacePorePressuresDbl( interfacePorePressures.size(), std::numeric_limits<double>::infinity() );
|
|
#pragma omp parallel for
|
|
for ( int64_t i = 0; i < static_cast<int64_t>( intersections().size() ); ++i )
|
|
{
|
|
double hydroStaticPorePressureBar = hydroStaticPorePressureForSegment( i );
|
|
interfaceShValuesDbl[i] = interfaceShValues[i] / hydroStaticPorePressureBar;
|
|
interfacePorePressuresDbl[i] = interfacePorePressures[i];
|
|
}
|
|
|
|
if ( !mds->empty() && !values->empty() )
|
|
{
|
|
std::vector<unsigned char> smoothOrFilterSegments = determineFilteringOrSmoothing( interfacePorePressuresDbl );
|
|
|
|
smoothSegments( mds, tvds, values, interfaceShValuesDbl, smoothOrFilterSegments, smoothingTreshold );
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Get curve data for a given parameter. Returns the output units of the data.
|
|
//--------------------------------------------------------------------------------------------------
|
|
QString RigGeoMechWellLogExtractor::curveData( const RigFemResultAddress& resAddr, int timeStepIndex, int frameIndex, std::vector<double>* values )
|
|
{
|
|
CVF_TIGHT_ASSERT( values );
|
|
|
|
if ( resAddr.resultPosType == RIG_WELLPATH_DERIVED )
|
|
{
|
|
if ( m_wellPathGeometry->rkbDiff() == HUGE_VAL )
|
|
{
|
|
RiaLogging::error( "Well path has an invalid datum elevation and we cannot estimate TVDRKB. No well bore "
|
|
"stability curves created." );
|
|
return "";
|
|
}
|
|
|
|
if ( !isValid( m_waterDepth ) )
|
|
{
|
|
RiaLogging::error( "Well path does not intersect with sea floor. No well bore "
|
|
"stability curves created." );
|
|
return "";
|
|
}
|
|
|
|
if ( resAddr.fieldName == RiaResultNames::wbsFGResult().toStdString() )
|
|
{
|
|
wellBoreWallCurveData( resAddr, timeStepIndex, frameIndex, values );
|
|
// Try to replace invalid values with Shale-values
|
|
wellBoreFGShale( timeStepIndex, frameIndex, values );
|
|
values->front() = wbsCurveValuesAtMsl();
|
|
}
|
|
else if ( resAddr.fieldName == RiaResultNames::wbsSFGResult().toStdString() )
|
|
{
|
|
wellBoreWallCurveData( resAddr, timeStepIndex, frameIndex, values );
|
|
}
|
|
else if ( resAddr.fieldName == RiaResultNames::wbsPPResult().toStdString() ||
|
|
resAddr.fieldName == RiaResultNames::wbsOBGResult().toStdString() ||
|
|
resAddr.fieldName == RiaResultNames::wbsSHResult().toStdString() )
|
|
{
|
|
wellPathScaledCurveData( resAddr, timeStepIndex, frameIndex, values );
|
|
values->front() = wbsCurveValuesAtMsl();
|
|
}
|
|
else if ( resAddr.fieldName == RiaResultNames::wbsAzimuthResult().toStdString() ||
|
|
resAddr.fieldName == RiaResultNames::wbsInclinationResult().toStdString() )
|
|
{
|
|
wellPathAngles( resAddr, values );
|
|
}
|
|
else if ( resAddr.fieldName == RiaResultNames::wbsSHMkResult().toStdString() )
|
|
{
|
|
wellBoreSH_MatthewsKelly( timeStepIndex, frameIndex, values );
|
|
values->front() = wbsCurveValuesAtMsl();
|
|
}
|
|
else
|
|
{
|
|
// Plotting parameters as curves
|
|
RigWbsParameter param;
|
|
if ( RigWbsParameter::findParameter( QString::fromStdString( resAddr.fieldName ), ¶m ) )
|
|
{
|
|
if ( param == RigWbsParameter::FG_Shale() )
|
|
{
|
|
wellBoreFGShale( timeStepIndex, frameIndex, values );
|
|
}
|
|
else
|
|
{
|
|
if ( param == RigWbsParameter::OBG0() )
|
|
{
|
|
frameIndex = 0;
|
|
}
|
|
calculateWbsParameterForAllSegments( param, timeStepIndex, frameIndex, values, true );
|
|
if ( param == RigWbsParameter::UCS() ) // UCS is reported as UCS/100
|
|
{
|
|
for ( double& value : *values )
|
|
{
|
|
if ( isValid( value ) ) value /= 100.0;
|
|
}
|
|
return RiaWellLogUnitTools<double>::barX100UnitString();
|
|
}
|
|
else if ( param == RigWbsParameter::DF() || param == RigWbsParameter::poissonRatio() )
|
|
{
|
|
return RiaWellLogUnitTools<double>::noUnitString();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return RiaWellLogUnitTools<double>::sg_emwUnitString();
|
|
}
|
|
else if ( resAddr.isValid() )
|
|
{
|
|
RigFemResultAddress convResAddr = resAddr;
|
|
|
|
// When showing POR results, always use the element nodal result,
|
|
// to get correct handling of elements without POR results
|
|
|
|
if ( convResAddr.fieldName == "POR-Bar" ) convResAddr.resultPosType = RIG_ELEMENT_NODAL;
|
|
|
|
CVF_ASSERT( resAddr.resultPosType != RIG_WELLPATH_DERIVED );
|
|
|
|
const std::vector<float>& resultValues = m_caseData->femPartResults()->resultValues( convResAddr, m_partId, timeStepIndex, frameIndex );
|
|
|
|
if ( !resultValues.empty() )
|
|
{
|
|
std::vector<float> interfaceValues = interpolateInterfaceValues( convResAddr, timeStepIndex, frameIndex, resultValues );
|
|
|
|
values->resize( interfaceValues.size(), std::numeric_limits<double>::infinity() );
|
|
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
|
|
{
|
|
( *values )[intersectionIdx] = static_cast<double>( interfaceValues[intersectionIdx] );
|
|
}
|
|
}
|
|
}
|
|
return RiaWellLogUnitTools<double>::barUnitString();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<RigGeoMechWellLogExtractor::WbsParameterSource>
|
|
RigGeoMechWellLogExtractor::calculateWbsParameterForAllSegments( const RigWbsParameter& parameter,
|
|
WbsParameterSource primarySource,
|
|
int timeStepIndex,
|
|
int frameIndex,
|
|
std::vector<double>* outputValues,
|
|
bool allowNormalization )
|
|
{
|
|
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
|
|
|
|
std::vector<WbsParameterSource> finalSourcesPerSegment( intersections().size(), RigWbsParameter::UNDEFINED );
|
|
|
|
if ( primarySource == RigWbsParameter::UNDEFINED )
|
|
{
|
|
return finalSourcesPerSegment;
|
|
}
|
|
|
|
bool isPPResResult = parameter == RigWbsParameter::PP_Reservoir();
|
|
bool isPPresult = isPPResResult || parameter == RigWbsParameter::PP_NonReservoir();
|
|
|
|
std::vector<WbsParameterSource> allSources = parameter.sources();
|
|
auto primary_it = std::find( allSources.begin(), allSources.end(), primarySource );
|
|
CVF_ASSERT( primary_it != allSources.end() );
|
|
|
|
std::vector<double> gridValues;
|
|
if ( std::find( allSources.begin(), allSources.end(), RigWbsParameter::GRID ) != allSources.end() ||
|
|
parameter == RigWbsParameter::PP_Reservoir() )
|
|
{
|
|
RigFemResultAddress nativeAddr = parameter.femAddress( RigWbsParameter::GRID );
|
|
|
|
const std::vector<float>& unscaledResultValues = resultCollection->resultValues( nativeAddr, m_partId, timeStepIndex, frameIndex );
|
|
std::vector<float> interpolatedInterfaceValues =
|
|
interpolateInterfaceValues( nativeAddr, timeStepIndex, frameIndex, unscaledResultValues );
|
|
gridValues.resize( intersections().size(), std::numeric_limits<double>::infinity() );
|
|
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
|
|
{
|
|
float averageUnscaledValue = std::numeric_limits<float>::infinity();
|
|
averageIntersectionValuesToSegmentValue( intersectionIdx,
|
|
interpolatedInterfaceValues,
|
|
std::numeric_limits<float>::infinity(),
|
|
&averageUnscaledValue );
|
|
gridValues[intersectionIdx] = static_cast<double>( averageUnscaledValue );
|
|
}
|
|
}
|
|
|
|
const std::vector<std::pair<double, double>>& lasFileValues = m_lasFileValues.at( parameter );
|
|
const double& userDefinedValue = m_userDefinedValues.at( parameter );
|
|
|
|
std::vector<float> elementPropertyValues;
|
|
if ( std::find( allSources.begin(), allSources.end(), RigWbsParameter::ELEMENT_PROPERTY_TABLE ) != allSources.end() )
|
|
{
|
|
const std::vector<float>* elementPropertyValuesInput = nullptr;
|
|
|
|
std::vector<float> tvdRKBs;
|
|
for ( double tvdValue : cellIntersectionTVDs() )
|
|
{
|
|
tvdRKBs.push_back( tvdValue + m_wellPathGeometry->rkbDiff() );
|
|
}
|
|
RigFemResultAddress elementPropertyAddr = parameter.femAddress( RigWbsParameter::ELEMENT_PROPERTY_TABLE );
|
|
elementPropertyValuesInput = &( resultCollection->resultValues( elementPropertyAddr, m_partId, timeStepIndex, frameIndex ) );
|
|
if ( elementPropertyValuesInput )
|
|
{
|
|
RiaWellLogUnitTools<float>::convertValues( tvdRKBs,
|
|
*elementPropertyValuesInput,
|
|
&elementPropertyValues,
|
|
parameter.units( RigWbsParameter::ELEMENT_PROPERTY_TABLE ),
|
|
parameterInputUnits( parameter ) );
|
|
}
|
|
}
|
|
|
|
std::vector<double> unscaledValues( intersections().size(), std::numeric_limits<double>::infinity() );
|
|
|
|
double waterDensityGCM3 = m_userDefinedValues[RigWbsParameter::waterDensity()];
|
|
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
|
|
{
|
|
// Loop from primary source and out for each value
|
|
for ( auto it = primary_it; it != allSources.end(); ++it )
|
|
{
|
|
if ( *it == RigWbsParameter::GRID ) // Priority 0: Grid
|
|
{
|
|
if ( intersectionIdx < static_cast<int64_t>( gridValues.size() ) &&
|
|
gridValues[intersectionIdx] != std::numeric_limits<double>::infinity() )
|
|
{
|
|
unscaledValues[intersectionIdx] = gridValues[intersectionIdx];
|
|
finalSourcesPerSegment[intersectionIdx] = RigWbsParameter::GRID;
|
|
break;
|
|
}
|
|
}
|
|
else if ( *it == RigWbsParameter::LAS_FILE ) // Priority 1: Las-file value
|
|
{
|
|
if ( !lasFileValues.empty() )
|
|
{
|
|
double lasValue = getWellLogIntersectionValue( intersectionIdx, lasFileValues );
|
|
// Only accept las-values for PP_reservoir if the grid result is valid
|
|
bool validLasRegion = true;
|
|
if ( isPPResResult )
|
|
{
|
|
validLasRegion = intersectionIdx < static_cast<int64_t>( gridValues.size() ) &&
|
|
gridValues[intersectionIdx] != std::numeric_limits<double>::infinity();
|
|
}
|
|
|
|
if ( validLasRegion && lasValue != std::numeric_limits<double>::infinity() )
|
|
{
|
|
unscaledValues[intersectionIdx] = lasValue;
|
|
finalSourcesPerSegment[intersectionIdx] = RigWbsParameter::LAS_FILE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if ( *it == RigWbsParameter::ELEMENT_PROPERTY_TABLE ) // Priority 2: Element property table value
|
|
{
|
|
if ( !elementPropertyValues.empty() )
|
|
{
|
|
size_t elmIdx = intersectedCellsGlobIdx()[intersectionIdx];
|
|
if ( elmIdx < elementPropertyValues.size() )
|
|
{
|
|
unscaledValues[intersectionIdx] = elementPropertyValues[elmIdx];
|
|
finalSourcesPerSegment[intersectionIdx] = RigWbsParameter::ELEMENT_PROPERTY_TABLE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if ( *it == RigWbsParameter::HYDROSTATIC && isPPresult )
|
|
{
|
|
unscaledValues[intersectionIdx] =
|
|
userDefinedValue * hydroStaticPorePressureForIntersection( intersectionIdx, waterDensityGCM3 );
|
|
finalSourcesPerSegment[intersectionIdx] = RigWbsParameter::HYDROSTATIC;
|
|
break;
|
|
}
|
|
else if ( *it == RigWbsParameter::USER_DEFINED )
|
|
{
|
|
unscaledValues[intersectionIdx] = userDefinedValue;
|
|
finalSourcesPerSegment[intersectionIdx] = RigWbsParameter::USER_DEFINED;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( allowNormalization && parameter.normalizeByHydrostaticPP() )
|
|
{
|
|
outputValues->resize( unscaledValues.size(), std::numeric_limits<double>::infinity() );
|
|
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
|
|
{
|
|
RigWbsParameter::Source source = finalSourcesPerSegment[intersectionIdx];
|
|
|
|
if ( source == RigWbsParameter::ELEMENT_PROPERTY_TABLE || source == RigWbsParameter::GRID )
|
|
{
|
|
( *outputValues )[intersectionIdx] = unscaledValues[intersectionIdx] / hydroStaticPorePressureForSegment( intersectionIdx );
|
|
}
|
|
else
|
|
{
|
|
( *outputValues )[intersectionIdx] =
|
|
unscaledValues[intersectionIdx] / hydroStaticPorePressureForIntersection( intersectionIdx );
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
outputValues->swap( unscaledValues );
|
|
}
|
|
return finalSourcesPerSegment;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<RigGeoMechWellLogExtractor::WbsParameterSource>
|
|
RigGeoMechWellLogExtractor::calculateWbsParameterForAllSegments( const RigWbsParameter& parameter,
|
|
int timeStepIndex,
|
|
int frameIndex,
|
|
std::vector<double>* outputValues,
|
|
bool allowNormalization )
|
|
{
|
|
return calculateWbsParameterForAllSegments( parameter,
|
|
m_parameterSources.at( parameter ),
|
|
timeStepIndex,
|
|
frameIndex,
|
|
outputValues,
|
|
allowNormalization );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<RigGeoMechWellLogExtractor::WbsParameterSource>
|
|
RigGeoMechWellLogExtractor::calculateWbsParametersForAllSegments( const RigFemResultAddress& resAddr,
|
|
int timeStepIndex,
|
|
int frameIndex,
|
|
std::vector<double>* values,
|
|
bool allowNormalization )
|
|
{
|
|
CVF_ASSERT( values );
|
|
|
|
RigWbsParameter param;
|
|
if ( !RigWbsParameter::findParameter( QString::fromStdString( resAddr.fieldName ), ¶m ) )
|
|
{
|
|
CVF_ASSERT( false && "wbsParameters() called on something that isn't a wbs parameter" );
|
|
}
|
|
|
|
return calculateWbsParameterForAllSegments( param, m_userDefinedValues.at( param ), frameIndex, values, allowNormalization );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::wellPathAngles( const RigFemResultAddress& resAddr, std::vector<double>* values )
|
|
{
|
|
CVF_ASSERT( values );
|
|
CVF_ASSERT( resAddr.fieldName == "Azimuth" || resAddr.fieldName == "Inclination" );
|
|
values->resize( intersections().size(), 0.0f );
|
|
const double epsilon = 1.0e-6 * 360;
|
|
const cvf::Vec3d trueNorth( 0.0, 1.0, 0.0 );
|
|
const cvf::Vec3d up( 0.0, 0.0, 1.0 );
|
|
double previousAzimuth = 0.0;
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
|
|
{
|
|
cvf::Vec3d wellPathTangent = calculateWellPathTangent( intersectionIdx, TangentFollowWellPathSegments );
|
|
|
|
// Deviation from vertical. Since well path is tending downwards we compare with negative z.
|
|
double inclination = cvf::Math::toDegrees( std::acos( cvf::Vec3d( 0.0, 0.0, -1.0 ) * wellPathTangent.getNormalized() ) );
|
|
|
|
if ( resAddr.fieldName == "Azimuth" )
|
|
{
|
|
double azimuth = HUGE_VAL;
|
|
|
|
// Azimuth is not defined when well path is vertical. We define it as infinite to avoid it showing up in the
|
|
// plot.
|
|
if ( cvf::Math::valueInRange( inclination, epsilon, 180.0 - epsilon ) )
|
|
{
|
|
cvf::Vec3d projectedTangentXY = wellPathTangent;
|
|
projectedTangentXY.z() = 0.0;
|
|
|
|
// Do tangentXY to true north for clockwise angles.
|
|
double dotProduct = projectedTangentXY * trueNorth;
|
|
double crossProduct = ( projectedTangentXY ^ trueNorth ) * up;
|
|
// http://www.glossary.oilfield.slb.com/Terms/a/azimuth.aspx
|
|
azimuth = cvf::Math::toDegrees( std::atan2( crossProduct, dotProduct ) );
|
|
if ( azimuth < 0.0 )
|
|
{
|
|
// Straight atan2 gives angle from -PI to PI yielding angles from -180 to 180
|
|
// where the negative angles are counter clockwise.
|
|
// To get all positive clockwise angles, we add 360 degrees to negative angles.
|
|
azimuth = azimuth + 360.0;
|
|
}
|
|
}
|
|
// Make azimuth continuous in most cases
|
|
if ( azimuth - previousAzimuth > 300.0 )
|
|
{
|
|
azimuth -= 360.0;
|
|
}
|
|
else if ( previousAzimuth - azimuth > 300.0 )
|
|
{
|
|
azimuth += 360.0;
|
|
}
|
|
|
|
( *values )[intersectionIdx] = azimuth;
|
|
previousAzimuth = azimuth;
|
|
}
|
|
else
|
|
{
|
|
( *values )[intersectionIdx] = inclination;
|
|
}
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<RigGeoMechWellLogExtractor::WbsParameterSource>
|
|
RigGeoMechWellLogExtractor::wellPathScaledCurveData( const RigFemResultAddress& resAddr,
|
|
int timeStepIndex,
|
|
int frameIndex,
|
|
std::vector<double>* values,
|
|
bool forceGridSourceForPPReservoir /*=false*/ )
|
|
{
|
|
CVF_ASSERT( values );
|
|
|
|
values->resize( intersections().size(), std::numeric_limits<double>::infinity() );
|
|
std::vector<WbsParameterSource> sources( intersections().size(), RigWbsParameter::UNDEFINED );
|
|
|
|
if ( resAddr.fieldName == RiaResultNames::wbsPPResult().toStdString() )
|
|
{
|
|
// Las or element property table values
|
|
std::vector<double> ppSandValues( intersections().size(), std::numeric_limits<double>::infinity() );
|
|
std::vector<double> ppShaleValues( intersections().size(), std::numeric_limits<double>::infinity() );
|
|
|
|
std::vector<WbsParameterSource> ppSandSources;
|
|
if ( forceGridSourceForPPReservoir )
|
|
{
|
|
ppSandSources =
|
|
calculateWbsParameterForAllSegments( RigWbsParameter::PP_Reservoir(), RigWbsParameter::GRID, frameIndex, &ppSandValues, true );
|
|
}
|
|
else
|
|
{
|
|
ppSandSources =
|
|
calculateWbsParameterForAllSegments( RigWbsParameter::PP_Reservoir(), timeStepIndex, frameIndex, &ppSandValues, true );
|
|
}
|
|
|
|
std::vector<WbsParameterSource> ppShaleSources =
|
|
calculateWbsParameterForAllSegments( RigWbsParameter::PP_NonReservoir(), 0, 0, &ppShaleValues, true );
|
|
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
|
|
{
|
|
if ( ( *values )[intersectionIdx] == std::numeric_limits<double>::infinity() )
|
|
{
|
|
if ( ppSandValues[intersectionIdx] != std::numeric_limits<double>::infinity() )
|
|
{
|
|
( *values )[intersectionIdx] = ppSandValues[intersectionIdx];
|
|
sources[intersectionIdx] = ppSandSources[intersectionIdx];
|
|
}
|
|
else if ( ppShaleValues[intersectionIdx] != std::numeric_limits<double>::infinity() )
|
|
{
|
|
( *values )[intersectionIdx] = ppShaleValues[intersectionIdx];
|
|
sources[intersectionIdx] = ppShaleSources[intersectionIdx];
|
|
}
|
|
else
|
|
{
|
|
( *values )[intersectionIdx] = 1.0;
|
|
sources[intersectionIdx] = RigWbsParameter::HYDROSTATIC;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if ( resAddr.fieldName == RiaResultNames::wbsOBGResult().toStdString() )
|
|
{
|
|
sources = calculateWbsParameterForAllSegments( RigWbsParameter::OBG(), timeStepIndex, frameIndex, values, true );
|
|
}
|
|
else
|
|
{
|
|
sources = calculateWbsParameterForAllSegments( RigWbsParameter::SH(), timeStepIndex, frameIndex, values, true );
|
|
}
|
|
|
|
return sources;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::wellBoreWallCurveData( const RigFemResultAddress& resAddr,
|
|
int timeStepIndex,
|
|
int frameIndex,
|
|
std::vector<double>* values )
|
|
{
|
|
CVF_ASSERT( values );
|
|
CVF_ASSERT( resAddr.fieldName == RiaResultNames::wbsFGResult().toStdString() ||
|
|
resAddr.fieldName == RiaResultNames::wbsSFGResult().toStdString() );
|
|
|
|
// The result addresses needed
|
|
RigFemResultAddress stressResAddr( RIG_ELEMENT_NODAL, "ST", "" );
|
|
RigFemResultAddress porBarResAddr( RIG_ELEMENT_NODAL, "POR-Bar", "" );
|
|
|
|
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
|
|
|
|
// Load results
|
|
std::vector<caf::Ten3f> vertexStressesFloat = resultCollection->tensors( stressResAddr, m_partId, timeStepIndex, frameIndex );
|
|
if ( !vertexStressesFloat.size() ) return;
|
|
|
|
std::vector<caf::Ten3d> vertexStresses;
|
|
vertexStresses.reserve( vertexStressesFloat.size() );
|
|
for ( const caf::Ten3f& floatTensor : vertexStressesFloat )
|
|
{
|
|
vertexStresses.push_back( caf::Ten3d( floatTensor ) );
|
|
}
|
|
|
|
std::vector<caf::Ten3d> interpolatedInterfaceStressBar =
|
|
interpolateInterfaceValues( stressResAddr, timeStepIndex, frameIndex, vertexStresses );
|
|
|
|
values->resize( intersections().size(), std::numeric_limits<float>::infinity() );
|
|
|
|
std::vector<double> ppSandAllSegments( intersections().size(), std::numeric_limits<double>::infinity() );
|
|
std::vector<WbsParameterSource> ppSources =
|
|
calculateWbsParameterForAllSegments( RigWbsParameter::PP_Reservoir(), RigWbsParameter::GRID, frameIndex, &ppSandAllSegments, false );
|
|
|
|
std::vector<double> poissonAllSegments( intersections().size(), std::numeric_limits<double>::infinity() );
|
|
calculateWbsParameterForAllSegments( RigWbsParameter::poissonRatio(), timeStepIndex, frameIndex, &poissonAllSegments, false );
|
|
|
|
std::vector<double> ucsAllSegments( intersections().size(), std::numeric_limits<double>::infinity() );
|
|
calculateWbsParameterForAllSegments( RigWbsParameter::UCS(), timeStepIndex, frameIndex, &ucsAllSegments, false );
|
|
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
|
|
{
|
|
// FG is for sands, SFG for shale. Sands has valid PP, shale does not.
|
|
bool isFGregion = ppSources[intersectionIdx] == RigWbsParameter::GRID;
|
|
|
|
double hydroStaticPorePressureBar = hydroStaticPorePressureForSegment( intersectionIdx );
|
|
|
|
double porePressureBar = ppSandAllSegments[intersectionIdx];
|
|
if ( porePressureBar == std::numeric_limits<double>::infinity() )
|
|
{
|
|
porePressureBar = hydroStaticPorePressureBar;
|
|
}
|
|
|
|
double poissonRatio = poissonAllSegments[intersectionIdx];
|
|
double ucsBar = ucsAllSegments[intersectionIdx];
|
|
|
|
caf::Ten3d segmentStress;
|
|
bool validSegmentStress =
|
|
averageIntersectionValuesToSegmentValue( intersectionIdx, interpolatedInterfaceStressBar, caf::Ten3d::invalid(), &segmentStress );
|
|
|
|
cvf::Vec3d wellPathTangent = calculateWellPathTangent( intersectionIdx, TangentConstantWithinCell );
|
|
caf::Ten3d wellPathStressFloat = transformTensorToWellPathOrientation( wellPathTangent, segmentStress );
|
|
caf::Ten3d wellPathStressDouble( wellPathStressFloat );
|
|
|
|
RigGeoMechBoreHoleStressCalculator sigmaCalculator( wellPathStressDouble, porePressureBar, poissonRatio, ucsBar, 32 );
|
|
double resultValue = std::numeric_limits<double>::infinity();
|
|
if ( resAddr.fieldName == RiaResultNames::wbsFGResult().toStdString() )
|
|
{
|
|
if ( isFGregion && validSegmentStress )
|
|
{
|
|
resultValue = sigmaCalculator.solveFractureGradient();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CVF_ASSERT( resAddr.fieldName == RiaResultNames::wbsSFGResult().toStdString() );
|
|
if ( !isFGregion && validSegmentStress )
|
|
{
|
|
resultValue = sigmaCalculator.solveStassiDalia();
|
|
}
|
|
}
|
|
if ( resultValue != std::numeric_limits<double>::infinity() )
|
|
{
|
|
if ( hydroStaticPorePressureBar > 1.0e-8 )
|
|
{
|
|
resultValue /= hydroStaticPorePressureBar;
|
|
}
|
|
}
|
|
( *values )[intersectionIdx] = resultValue;
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::wellBoreFGShale( int timeStepIndex, int frameIndex, std::vector<double>* values )
|
|
{
|
|
if ( values->empty() ) values->resize( intersections().size(), std::numeric_limits<double>::infinity() );
|
|
|
|
WbsParameterSource source = m_parameterSources.at( RigWbsParameter::FG_Shale() );
|
|
if ( source == RigWbsParameter::DERIVED_FROM_K0FG )
|
|
{
|
|
std::vector<double> PP0; // results
|
|
std::vector<double> K0_FG, OBG0; // parameters
|
|
|
|
RigFemResultAddress ppAddr( RIG_WELLPATH_DERIVED, RiaResultNames::wbsPPResult().toStdString(), "" );
|
|
wellPathScaledCurveData( ppAddr, 0, 0, &PP0, true );
|
|
|
|
calculateWbsParameterForAllSegments( RigWbsParameter::K0_FG(), timeStepIndex, frameIndex, &K0_FG, true );
|
|
calculateWbsParameterForAllSegments( RigWbsParameter::OBG0(), 0, 0, &OBG0, true );
|
|
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
|
|
{
|
|
if ( !isValid( ( *values )[intersectionIdx] ) )
|
|
{
|
|
if ( isValid( PP0[intersectionIdx] ) && isValid( OBG0[intersectionIdx] ) && isValid( K0_FG[intersectionIdx] ) )
|
|
{
|
|
( *values )[intersectionIdx] =
|
|
( K0_FG[intersectionIdx] * ( OBG0[intersectionIdx] - PP0[intersectionIdx] ) + PP0[intersectionIdx] );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
std::vector<double> SH;
|
|
calculateWbsParameterForAllSegments( RigWbsParameter::SH(), timeStepIndex, frameIndex, &SH, true );
|
|
CVF_ASSERT( SH.size() == intersections().size() );
|
|
double multiplier = m_userDefinedValues.at( RigWbsParameter::FG_Shale() );
|
|
CVF_ASSERT( multiplier != std::numeric_limits<double>::infinity() );
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
|
|
{
|
|
if ( !isValid( ( *values )[intersectionIdx] ) )
|
|
{
|
|
if ( isValid( SH[intersectionIdx] ) )
|
|
{
|
|
( *values )[intersectionIdx] = SH[intersectionIdx] * multiplier;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::wellBoreSH_MatthewsKelly( int timeStepIndex, int frameIndex, std::vector<double>* values )
|
|
{
|
|
std::vector<double> PP, PP0; // results
|
|
std::vector<double> K0_SH, OBG0, DF; // parameters
|
|
|
|
RigFemResultAddress ppAddr( RIG_WELLPATH_DERIVED, RiaResultNames::wbsPPResult().toStdString(), "" );
|
|
|
|
curveData( ppAddr, timeStepIndex, frameIndex, &PP );
|
|
curveData( ppAddr, 0, 0, &PP0 );
|
|
|
|
calculateWbsParameterForAllSegments( RigWbsParameter::K0_SH(), timeStepIndex, frameIndex, &K0_SH, true );
|
|
calculateWbsParameterForAllSegments( RigWbsParameter::OBG0(), 0, 0, &OBG0, true );
|
|
calculateWbsParameterForAllSegments( RigWbsParameter::DF(), timeStepIndex, frameIndex, &DF, true );
|
|
|
|
values->resize( intersections().size(), std::numeric_limits<double>::infinity() );
|
|
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
|
|
{
|
|
if ( isValid( PP[intersectionIdx] ) && isValid( PP0[intersectionIdx] ) && isValid( OBG0[intersectionIdx] ) &&
|
|
isValid( K0_SH[intersectionIdx] ) && isValid( DF[intersectionIdx] ) )
|
|
{
|
|
( *values )[intersectionIdx] = ( K0_SH[intersectionIdx] * ( OBG0[intersectionIdx] - PP0[intersectionIdx] ) +
|
|
PP0[intersectionIdx] + DF[intersectionIdx] * ( PP[intersectionIdx] - PP0[intersectionIdx] ) );
|
|
}
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
const RigGeoMechCaseData* RigGeoMechWellLogExtractor::caseData()
|
|
{
|
|
return m_caseData.p();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::setWbsLasValues( const RigWbsParameter& parameter, const std::vector<std::pair<double, double>>& values )
|
|
{
|
|
m_lasFileValues[parameter] = values;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::setWbsParametersSource( RigWbsParameter parameter, WbsParameterSource source )
|
|
{
|
|
m_parameterSources[parameter] = source;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::setWbsUserDefinedValue( RigWbsParameter parameter, double userDefinedValue )
|
|
{
|
|
m_userDefinedValues[parameter] = userDefinedValue;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
QString RigGeoMechWellLogExtractor::parameterInputUnits( const RigWbsParameter& parameter )
|
|
{
|
|
if ( parameter == RigWbsParameter::PP_NonReservoir() || parameter == RigWbsParameter::PP_Reservoir() || parameter == RigWbsParameter::UCS() )
|
|
{
|
|
return RiaWellLogUnitTools<double>::barUnitString();
|
|
}
|
|
else if ( parameter == RigWbsParameter::poissonRatio() || parameter == RigWbsParameter::DF() )
|
|
{
|
|
return RiaWellLogUnitTools<double>::noUnitString();
|
|
}
|
|
else if ( parameter == RigWbsParameter::waterDensity() )
|
|
{
|
|
return RiaWellLogUnitTools<double>::gPerCm3UnitString();
|
|
}
|
|
return RiaWellLogUnitTools<double>::sg_emwUnitString();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<double> RigGeoMechWellLogExtractor::porePressureSourceRegions( int timeStepIndex, int frameIndex )
|
|
{
|
|
RigFemResultAddress ppResAddr( RIG_ELEMENT_NODAL, RiaResultNames::wbsPPResult().toStdString(), "" );
|
|
|
|
std::vector<double> values;
|
|
std::vector<WbsParameterSource> sources = wellPathScaledCurveData( ppResAddr, timeStepIndex, frameIndex, &values );
|
|
|
|
std::vector<double> doubleSources( sources.size(), 0.0 );
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
|
|
{
|
|
doubleSources[intersectionIdx] = static_cast<double>( sources[intersectionIdx] );
|
|
}
|
|
return doubleSources;
|
|
}
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<double> RigGeoMechWellLogExtractor::poissonSourceRegions( int timeStepIndex, int frameIndex )
|
|
{
|
|
std::vector<double> outputValues;
|
|
std::vector<WbsParameterSource> sources =
|
|
calculateWbsParameterForAllSegments( RigWbsParameter::poissonRatio(), timeStepIndex, frameIndex, &outputValues, false );
|
|
|
|
std::vector<double> doubleSources( sources.size(), 0.0 );
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
|
|
{
|
|
doubleSources[intersectionIdx] = static_cast<double>( sources[intersectionIdx] );
|
|
}
|
|
return doubleSources;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<double> RigGeoMechWellLogExtractor::ucsSourceRegions( int timeStepIndex, int frameIndex )
|
|
{
|
|
std::vector<double> outputValues;
|
|
std::vector<WbsParameterSource> sources =
|
|
calculateWbsParameterForAllSegments( RigWbsParameter::UCS(), timeStepIndex, frameIndex, &outputValues, true );
|
|
|
|
std::vector<double> doubleSources( sources.size(), 0.0 );
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
|
|
{
|
|
doubleSources[intersectionIdx] = static_cast<double>( sources[intersectionIdx] );
|
|
}
|
|
return doubleSources;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
template <typename T>
|
|
T RigGeoMechWellLogExtractor::interpolateGridResultValue( RigFemResultPosEnum resultPosType,
|
|
const std::vector<T>& gridResultValues,
|
|
int64_t intersectionIdx ) const
|
|
{
|
|
const RigFemPart* femPart = m_caseData->femParts()->part( m_partId );
|
|
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
|
|
|
|
size_t elmIdx = intersectedCellsGlobIdx()[intersectionIdx];
|
|
RigElementType elmType = femPart->elementType( elmIdx );
|
|
|
|
if ( !( elmType == HEX8 || elmType == HEX8P ) ) return T();
|
|
|
|
if ( resultPosType == RIG_FORMATION_NAMES )
|
|
{
|
|
resultPosType = RIG_ELEMENT_NODAL; // formation indices are stored per element node result.
|
|
}
|
|
|
|
if ( resultPosType == RIG_ELEMENT )
|
|
{
|
|
return gridResultValues[elmIdx];
|
|
}
|
|
|
|
cvf::StructGridInterface::FaceType cellFace = intersectedCellFaces()[intersectionIdx];
|
|
|
|
if ( cellFace == cvf::StructGridInterface::NO_FACE )
|
|
{
|
|
if ( resultPosType == RIG_ELEMENT_NODAL_FACE )
|
|
{
|
|
return std::numeric_limits<T>::infinity(); // undefined value. ELEMENT_NODAL_FACE values are only defined on
|
|
// a face.
|
|
}
|
|
// TODO: Should interpolate within the whole hexahedron. This requires converting to locals coordinates.
|
|
// For now just pick the average value for the cell.
|
|
size_t gridResultValueIdx = femPart->resultValueIdxFromResultPosType( resultPosType, static_cast<int>( elmIdx ), 0 );
|
|
T sumOfVertexValues = gridResultValues[gridResultValueIdx];
|
|
for ( int i = 1; i < 8; ++i )
|
|
{
|
|
gridResultValueIdx = femPart->resultValueIdxFromResultPosType( resultPosType, static_cast<int>( elmIdx ), i );
|
|
sumOfVertexValues = sumOfVertexValues + gridResultValues[gridResultValueIdx];
|
|
}
|
|
return sumOfVertexValues * ( 1.0 / 8.0 );
|
|
}
|
|
|
|
int faceNodeCount = 0;
|
|
const int* elementLocalIndicesForFace = RigFemTypes::localElmNodeIndicesForFace( elmType, cellFace, &faceNodeCount );
|
|
const int* elmNodeIndices = femPart->connectivities( elmIdx );
|
|
|
|
cvf::Vec3d v0( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[0]]] );
|
|
cvf::Vec3d v1( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[1]]] );
|
|
cvf::Vec3d v2( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[2]]] );
|
|
cvf::Vec3d v3( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[3]]] );
|
|
|
|
std::vector<size_t> nodeResIdx( 4, cvf::UNDEFINED_SIZE_T );
|
|
|
|
for ( size_t i = 0; i < nodeResIdx.size(); ++i )
|
|
{
|
|
if ( resultPosType == RIG_ELEMENT_NODAL_FACE )
|
|
{
|
|
nodeResIdx[i] = gridResultIndexFace( elmIdx, cellFace, static_cast<int>( i ) );
|
|
}
|
|
else
|
|
{
|
|
nodeResIdx[i] =
|
|
femPart->resultValueIdxFromResultPosType( resultPosType, static_cast<int>( elmIdx ), elementLocalIndicesForFace[i] );
|
|
}
|
|
}
|
|
|
|
std::vector<T> nodeResultValues;
|
|
nodeResultValues.reserve( 4 );
|
|
for ( size_t i = 0; i < nodeResIdx.size(); ++i )
|
|
{
|
|
nodeResultValues.push_back( gridResultValues[nodeResIdx[i]] );
|
|
}
|
|
T interpolatedValue = cvf::GeometryTools::interpolateQuad<T>( v0,
|
|
nodeResultValues[0],
|
|
v1,
|
|
nodeResultValues[1],
|
|
v2,
|
|
nodeResultValues[2],
|
|
v3,
|
|
nodeResultValues[3],
|
|
intersections()[intersectionIdx] );
|
|
|
|
return interpolatedValue;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
size_t RigGeoMechWellLogExtractor::gridResultIndexFace( size_t elementIdx, cvf::StructGridInterface::FaceType cellFace, int faceLocalNodeIdx ) const
|
|
{
|
|
CVF_ASSERT( cellFace != cvf::StructGridInterface::NO_FACE && faceLocalNodeIdx < 4 );
|
|
return elementIdx * 24 + static_cast<int>( cellFace ) * 4 + faceLocalNodeIdx;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::calculateIntersection()
|
|
{
|
|
std::map<RigMDCellIdxEnterLeaveKey, HexIntersectionInfo> uniqueIntersections;
|
|
|
|
const RigFemPart* femPart = m_caseData->femParts()->part( m_partId );
|
|
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
|
|
|
|
for ( size_t wpp = 0; wpp < m_wellPathGeometry->wellPathPoints().size() - 1; ++wpp )
|
|
{
|
|
std::vector<HexIntersectionInfo> intersections;
|
|
cvf::Vec3d p1 = m_wellPathGeometry->wellPathPoints()[wpp];
|
|
cvf::Vec3d p2 = m_wellPathGeometry->wellPathPoints()[wpp + 1];
|
|
|
|
cvf::BoundingBox bb;
|
|
|
|
bb.add( p1 );
|
|
bb.add( p2 );
|
|
|
|
std::vector<size_t> closeCells = findCloseCells( bb );
|
|
|
|
cvf::Vec3d hexCorners[8];
|
|
for ( size_t ccIdx = 0; ccIdx < closeCells.size(); ++ccIdx )
|
|
{
|
|
RigElementType elmType = femPart->elementType( closeCells[ccIdx] );
|
|
if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue;
|
|
|
|
const int* cornerIndices = femPart->connectivities( closeCells[ccIdx] );
|
|
|
|
hexCorners[0] = cvf::Vec3d( nodeCoords[cornerIndices[0]] );
|
|
hexCorners[1] = cvf::Vec3d( nodeCoords[cornerIndices[1]] );
|
|
hexCorners[2] = cvf::Vec3d( nodeCoords[cornerIndices[2]] );
|
|
hexCorners[3] = cvf::Vec3d( nodeCoords[cornerIndices[3]] );
|
|
hexCorners[4] = cvf::Vec3d( nodeCoords[cornerIndices[4]] );
|
|
hexCorners[5] = cvf::Vec3d( nodeCoords[cornerIndices[5]] );
|
|
hexCorners[6] = cvf::Vec3d( nodeCoords[cornerIndices[6]] );
|
|
hexCorners[7] = cvf::Vec3d( nodeCoords[cornerIndices[7]] );
|
|
|
|
// int intersectionCount = RigHexIntersector::lineHexCellIntersection(p1, p2, hexCorners,
|
|
// closeCells[ccIdx], &intersections);
|
|
RigHexIntersectionTools::lineHexCellIntersection( p1, p2, hexCorners, closeCells[ccIdx], &intersections );
|
|
}
|
|
|
|
// Now, with all the intersections of this piece of line, we need to
|
|
// sort them in order, and set the measured depth and corresponding cell index
|
|
|
|
// Inserting the intersections in this map will remove identical intersections
|
|
// and sort them according to MD, CellIdx, Leave/enter
|
|
|
|
double md1 = m_wellPathGeometry->measuredDepths()[wpp];
|
|
double md2 = m_wellPathGeometry->measuredDepths()[wpp + 1];
|
|
|
|
const double tolerance = 0.1;
|
|
insertIntersectionsInMap( intersections, p1, md1, p2, md2, tolerance, &uniqueIntersections );
|
|
}
|
|
|
|
this->populateReturnArrays( uniqueIntersections );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<size_t> RigGeoMechWellLogExtractor::findCloseCells( const cvf::BoundingBox& bb )
|
|
{
|
|
std::vector<size_t> closeCells;
|
|
|
|
if ( m_caseData->femParts()->partCount() )
|
|
{
|
|
m_caseData->femParts()->part( m_partId )->findIntersectingElementIndices( bb, &closeCells );
|
|
}
|
|
return closeCells;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec3d RigGeoMechWellLogExtractor::calculateLengthInCell( size_t cellIndex, const cvf::Vec3d& startPoint, const cvf::Vec3d& endPoint ) const
|
|
{
|
|
std::array<cvf::Vec3d, 8> hexCorners;
|
|
|
|
const RigFemPart* femPart = m_caseData->femParts()->part( m_partId );
|
|
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
|
|
const int* cornerIndices = femPart->connectivities( cellIndex );
|
|
|
|
hexCorners[0] = cvf::Vec3d( nodeCoords[cornerIndices[0]] );
|
|
hexCorners[1] = cvf::Vec3d( nodeCoords[cornerIndices[1]] );
|
|
hexCorners[2] = cvf::Vec3d( nodeCoords[cornerIndices[2]] );
|
|
hexCorners[3] = cvf::Vec3d( nodeCoords[cornerIndices[3]] );
|
|
hexCorners[4] = cvf::Vec3d( nodeCoords[cornerIndices[4]] );
|
|
hexCorners[5] = cvf::Vec3d( nodeCoords[cornerIndices[5]] );
|
|
hexCorners[6] = cvf::Vec3d( nodeCoords[cornerIndices[6]] );
|
|
hexCorners[7] = cvf::Vec3d( nodeCoords[cornerIndices[7]] );
|
|
|
|
return RigWellPathIntersectionTools::calculateLengthInCell( hexCorners, startPoint, endPoint );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec3d RigGeoMechWellLogExtractor::calculateWellPathTangent( int64_t intersectionIdx, WellPathTangentCalculation calculationType ) const
|
|
{
|
|
if ( calculationType == TangentFollowWellPathSegments )
|
|
{
|
|
cvf::Vec3d segmentStart, segmentEnd;
|
|
m_wellPathGeometry->twoClosestPoints( intersections()[intersectionIdx], &segmentStart, &segmentEnd );
|
|
return ( segmentEnd - segmentStart ).getNormalized();
|
|
}
|
|
else
|
|
{
|
|
cvf::Vec3d wellPathTangent;
|
|
if ( intersectionIdx % 2 == 0 )
|
|
{
|
|
wellPathTangent = intersections()[intersectionIdx + 1] - intersections()[intersectionIdx];
|
|
}
|
|
else
|
|
{
|
|
wellPathTangent = intersections()[intersectionIdx] - intersections()[intersectionIdx - 1];
|
|
}
|
|
CVF_ASSERT( wellPathTangent.length() > 1.0e-7 );
|
|
return wellPathTangent.getNormalized();
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
caf::Ten3d RigGeoMechWellLogExtractor::transformTensorToWellPathOrientation( const cvf::Vec3d& wellPathTangent, const caf::Ten3d& tensor )
|
|
{
|
|
// Create local coordinate system for well path segment
|
|
cvf::Vec3d local_z = wellPathTangent;
|
|
cvf::Vec3d local_x = local_z.perpendicularVector().getNormalized();
|
|
cvf::Vec3d local_y = ( local_z ^ local_x ).getNormalized();
|
|
// Calculate the rotation matrix from global i, j, k to local x, y, z.
|
|
cvf::Mat4d rotationMatrix = cvf::Mat4d::fromCoordSystemAxes( &local_x, &local_y, &local_z );
|
|
|
|
return tensor.rotated( rotationMatrix.toMatrix3() );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec3f RigGeoMechWellLogExtractor::cellCentroid( size_t intersectionIdx ) const
|
|
{
|
|
const RigFemPart* femPart = m_caseData->femParts()->part( m_partId );
|
|
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
|
|
|
|
size_t elmIdx = intersectedCellsGlobIdx()[intersectionIdx];
|
|
RigElementType elmType = femPart->elementType( elmIdx );
|
|
int elementNodeCount = RigFemTypes::elementNodeCount( elmType );
|
|
|
|
const int* elmNodeIndices = femPart->connectivities( elmIdx );
|
|
|
|
cvf::Vec3f centroid( 0.0, 0.0, 0.0 );
|
|
for ( int i = 0; i < elementNodeCount; ++i )
|
|
{
|
|
centroid += nodeCoords[elmNodeIndices[i]];
|
|
}
|
|
return centroid / elementNodeCount;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigGeoMechWellLogExtractor::getWellLogIntersectionValue( size_t intersectionIdx,
|
|
const std::vector<std::pair<double, double>>& wellLogValues ) const
|
|
{
|
|
const double eps = 1.0e-4;
|
|
|
|
double intersection_md = cellIntersectionMDs()[intersectionIdx];
|
|
for ( size_t i = 0; i < wellLogValues.size() - 1; ++i )
|
|
{
|
|
double las_md_i = wellLogValues[i].first;
|
|
double las_md_ip1 = wellLogValues[i + 1].first;
|
|
if ( cvf::Math::valueInRange( intersection_md, las_md_i, las_md_ip1 ) )
|
|
{
|
|
double dist_i = std::abs( intersection_md - las_md_i );
|
|
double dist_ip1 = std::abs( intersection_md - las_md_ip1 );
|
|
|
|
if ( dist_i < eps )
|
|
{
|
|
return wellLogValues[i].second;
|
|
}
|
|
else if ( dist_ip1 < eps )
|
|
{
|
|
return wellLogValues[i + 1].second;
|
|
}
|
|
else
|
|
{
|
|
RiaWeightedMeanCalculator<double> averageCalc;
|
|
averageCalc.addValueAndWeight( wellLogValues[i].second, 1.0 / dist_i );
|
|
averageCalc.addValueAndWeight( wellLogValues[i + 1].second, 1.0 / dist_ip1 );
|
|
return averageCalc.weightedMean();
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we found no match, check first and last value within a threshold.
|
|
if ( !wellLogValues.empty() )
|
|
{
|
|
const double relativeEps = 1.0e-3 * std::max( 1.0, intersection_md );
|
|
if ( std::abs( wellLogValues.front().first - intersection_md ) < relativeEps )
|
|
{
|
|
return wellLogValues.front().second;
|
|
}
|
|
else if ( std::abs( wellLogValues.back().first - intersection_md ) < relativeEps )
|
|
{
|
|
return wellLogValues.back().second;
|
|
}
|
|
}
|
|
|
|
return std::numeric_limits<double>::infinity();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigGeoMechWellLogExtractor::pascalToBar( double pascalValue )
|
|
{
|
|
return pascalValue * 1.0e-5;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
template <typename T>
|
|
bool RigGeoMechWellLogExtractor::averageIntersectionValuesToSegmentValue( size_t intersectionIdx,
|
|
const std::vector<T>& values,
|
|
const T& invalidValue,
|
|
T* averagedCellValue ) const
|
|
{
|
|
CVF_ASSERT( values.size() >= 2 );
|
|
|
|
*averagedCellValue = invalidValue;
|
|
|
|
T value1, value2;
|
|
cvf::Vec3d centroid( cellCentroid( intersectionIdx ) );
|
|
double dist1 = 0.0, dist2 = 0.0;
|
|
if ( intersectionIdx % 2 == 0 )
|
|
{
|
|
value1 = values[intersectionIdx];
|
|
value2 = values[intersectionIdx + 1];
|
|
|
|
dist1 = ( centroid - intersections()[intersectionIdx] ).length();
|
|
dist2 = ( centroid - intersections()[intersectionIdx + 1] ).length();
|
|
}
|
|
else
|
|
{
|
|
value1 = values[intersectionIdx - 1];
|
|
value2 = values[intersectionIdx];
|
|
|
|
dist1 = ( centroid - intersections()[intersectionIdx - 1] ).length();
|
|
dist2 = ( centroid - intersections()[intersectionIdx] ).length();
|
|
}
|
|
|
|
if ( invalidValue == value1 || invalidValue == value2 )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
RiaWeightedMeanCalculator<T> averageCalc;
|
|
averageCalc.addValueAndWeight( value1, dist2 );
|
|
averageCalc.addValueAndWeight( value2, dist1 );
|
|
if ( averageCalc.validAggregatedWeight() )
|
|
{
|
|
*averagedCellValue = averageCalc.weightedMean();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
template <typename T>
|
|
std::vector<T> RigGeoMechWellLogExtractor::interpolateInterfaceValues( RigFemResultAddress nativeAddr,
|
|
int timeStepIndex,
|
|
int frameIndex,
|
|
const std::vector<T>& unscaledResultValues )
|
|
{
|
|
std::vector<T> interpolatedInterfaceValues;
|
|
initializeResultValues( interpolatedInterfaceValues, intersections().size() );
|
|
|
|
const RigFemPart* femPart = m_caseData->femParts()->part( m_partId );
|
|
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < static_cast<int64_t>( intersections().size() ); ++intersectionIdx )
|
|
{
|
|
size_t elmIdx = intersectedCellsGlobIdx()[intersectionIdx];
|
|
RigElementType elmType = femPart->elementType( elmIdx );
|
|
if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue;
|
|
|
|
interpolatedInterfaceValues[intersectionIdx] =
|
|
interpolateGridResultValue<T>( nativeAddr.resultPosType, unscaledResultValues, intersectionIdx );
|
|
}
|
|
return interpolatedInterfaceValues;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::initializeResultValues( std::vector<float>& resultValues, size_t resultCount )
|
|
{
|
|
resultValues.resize( resultCount, std::numeric_limits<float>::infinity() );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::initializeResultValues( std::vector<caf::Ten3d>& resultValues, size_t resultCount )
|
|
{
|
|
resultValues.resize( resultCount );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::smoothSegments( std::vector<double>* mds,
|
|
std::vector<double>* tvds,
|
|
std::vector<double>* values,
|
|
const std::vector<double>& interfaceShValues,
|
|
const std::vector<unsigned char>& smoothSegments,
|
|
const double smoothingThreshold )
|
|
{
|
|
const double eps = 1.0e-6;
|
|
|
|
double maxOriginalMd = ( *mds )[0];
|
|
double maxOriginalTvd = ( !tvds->empty() ) ? ( *tvds )[0] : 0.0;
|
|
for ( int64_t i = 1; i < static_cast<int64_t>( mds->size() - 1 ); ++i )
|
|
{
|
|
double originalMD = ( *mds )[i];
|
|
double originalTVD = ( !tvds->empty() ) ? ( *tvds )[i] : 0.0;
|
|
|
|
bool smoothSegment = smoothSegments[i] != 0u;
|
|
|
|
double diffMd = std::fabs( ( *mds )[i + 1] - ( *mds )[i] ) / std::max( eps, ( *mds )[i] );
|
|
double diffSh = std::fabs( interfaceShValues[i + 1] - interfaceShValues[i] ) / std::max( eps, interfaceShValues[i] );
|
|
|
|
bool leapSh = diffSh > smoothingThreshold && diffMd < eps;
|
|
if ( smoothSegment )
|
|
{
|
|
if ( leapSh )
|
|
{
|
|
// Update depth of current
|
|
if ( i == 1 )
|
|
{
|
|
( *mds )[i] = maxOriginalMd;
|
|
if ( !tvds->empty() )
|
|
{
|
|
( *tvds )[i] = maxOriginalTvd;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
( *mds )[i] = 0.5 * ( ( *mds )[i] + maxOriginalMd );
|
|
if ( !tvds->empty() )
|
|
{
|
|
( *tvds )[i] = 0.5 * ( ( *tvds )[i] + maxOriginalTvd );
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Update depth of current
|
|
( *mds )[i] = ( *mds )[i - 1];
|
|
|
|
if ( !tvds->empty() )
|
|
{
|
|
( *tvds )[i] = ( *tvds )[i - 1];
|
|
}
|
|
}
|
|
double diffMd_m1 = std::fabs( ( *mds )[i] - ( *mds )[i - 1] );
|
|
if ( diffMd_m1 < ( *mds )[i] * eps && ( *values )[i - 1] != std::numeric_limits<double>::infinity() )
|
|
{
|
|
( *values )[i] = ( *values )[i - 1];
|
|
}
|
|
}
|
|
if ( leapSh )
|
|
{
|
|
maxOriginalMd = std::max( maxOriginalMd, originalMD );
|
|
maxOriginalTvd = std::max( maxOriginalTvd, originalTVD );
|
|
}
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Note that this is unsigned char because std::vector<bool> is not thread safe
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<unsigned char> RigGeoMechWellLogExtractor::determineFilteringOrSmoothing( const std::vector<double>& porePressures )
|
|
{
|
|
std::vector<unsigned char> smoothOrFilterSegments( porePressures.size(), false );
|
|
#pragma omp parallel for
|
|
for ( int64_t i = 1; i < static_cast<int64_t>( porePressures.size() - 1 ); ++i )
|
|
{
|
|
bool validPP_im1 = porePressures[i - 1] >= 0.0 && porePressures[i - 1] != std::numeric_limits<double>::infinity();
|
|
bool validPP_i = porePressures[i] >= 0.0 && porePressures[i] != std::numeric_limits<double>::infinity();
|
|
bool validPP_ip1 = porePressures[i + 1] >= 0.0 && porePressures[i + 1] != std::numeric_limits<double>::infinity();
|
|
bool anyValidPP = validPP_im1 || validPP_i || validPP_ip1;
|
|
smoothOrFilterSegments[i] = !anyValidPP;
|
|
}
|
|
return smoothOrFilterSegments;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigGeoMechWellLogExtractor::hydroStaticPorePressureForIntersection( size_t intersectionIdx, double waterDensityGCM3 ) const
|
|
{
|
|
double trueVerticalDepth = cellIntersectionTVDs()[intersectionIdx];
|
|
double effectiveDepthMeters = trueVerticalDepth + m_wellPathGeometry->rkbDiff();
|
|
return hydroStaticPorePressureAtDepth( effectiveDepthMeters, waterDensityGCM3 );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigGeoMechWellLogExtractor::hydroStaticPorePressureForSegment( size_t intersectionIdx, double waterDensityGCM3 ) const
|
|
{
|
|
cvf::Vec3f centroid = cellCentroid( intersectionIdx );
|
|
double trueVerticalDepth = -centroid.z();
|
|
double effectiveDepthMeters = trueVerticalDepth + m_wellPathGeometry->rkbDiff();
|
|
return hydroStaticPorePressureAtDepth( effectiveDepthMeters, waterDensityGCM3 );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigGeoMechWellLogExtractor::hydroStaticPorePressureAtDepth( double effectiveDepthMeters, double waterDensityGCM3 )
|
|
{
|
|
double hydroStaticPorePressurePascal = effectiveDepthMeters * GRAVITY_ACCEL * waterDensityGCM3 * 1000;
|
|
double hydroStaticPorePressureBar = pascalToBar( hydroStaticPorePressurePascal );
|
|
return hydroStaticPorePressureBar;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigGeoMechWellLogExtractor::wbsCurveValuesAtMsl() const
|
|
{
|
|
double waterDensityGCM3 = m_userDefinedValues.at( RigWbsParameter::waterDensity() );
|
|
|
|
double rkbDiff = m_wellPathGeometry->rkbDiff();
|
|
if ( rkbDiff == std::numeric_limits<double>::infinity() )
|
|
{
|
|
rkbDiff = 0.0;
|
|
}
|
|
|
|
if ( m_waterDepth + rkbDiff < 1.0e-8 )
|
|
{
|
|
return waterDensityGCM3;
|
|
}
|
|
|
|
return waterDensityGCM3 * m_waterDepth / ( m_waterDepth + rkbDiff );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
bool RigGeoMechWellLogExtractor::isValid( double value )
|
|
{
|
|
return value != std::numeric_limits<double>::infinity();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
bool RigGeoMechWellLogExtractor::isValid( float value )
|
|
{
|
|
return value != std::numeric_limits<float>::infinity();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigGeoMechWellLogExtractor::calculateWaterDepth() const
|
|
{
|
|
// Need a well path with intersections to generate a precise water depth
|
|
if ( cellIntersectionTVDs().empty() || m_wellPathGeometry->wellPathPoints().empty() )
|
|
{
|
|
return std::numeric_limits<double>::infinity();
|
|
}
|
|
|
|
// Only calculate water depth if the well path starts outside the model.
|
|
cvf::BoundingBox boundingBox = m_caseData->femParts()->boundingBox();
|
|
if ( boundingBox.contains( m_wellPathGeometry->wellPathPoints().front() ) )
|
|
{
|
|
return std::numeric_limits<double>::infinity();
|
|
}
|
|
|
|
// Water depth is always the first intersection with model for geo mech models.
|
|
double waterDepth = cellIntersectionTVDs().front();
|
|
return waterDepth;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigGeoMechWellLogExtractor::estimateWaterDepth() const
|
|
{
|
|
// Estimate water depth using bounding box. This will be imprecise
|
|
// for models with a slanting top layer.
|
|
cvf::BoundingBox boundingBox = m_caseData->femParts()->boundingBox();
|
|
return std::abs( boundingBox.max().z() );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigGeoMechWellLogExtractor::waterDepth() const
|
|
{
|
|
return m_waterDepth;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
int RigGeoMechWellLogExtractor::partId() const
|
|
{
|
|
return m_partId;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
bool RigGeoMechWellLogExtractor::valid() const
|
|
{
|
|
return m_valid;
|
|
}
|