ResInsight/ApplicationCode/FileInterface/RifFractureExportTools.cpp

651 lines
24 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RifFractureExportTools.h"
#include "RiaApplication.h"
#include "RiaLogging.h"
#include "RigEclipseCaseData.h"
#include "RigFractureTransCalc.h"
#include "RigFractureCell.h"
#include "RigMainGrid.h"
#include "RigEclipseToStimPlanCellTransmissibilityCalculator.h"
#include "RigFractureTransmissibilityEquations.h"
#include "RimEclipseCase.h"
#include "RimEclipseResultDefinition.h"
#include "RimEclipseView.h"
#include "RimEclipseWell.h"
#include "RimEllipseFractureTemplate.h"
#include "RimFracture.h"
#include "RimFractureTemplate.h"
#include "RimSimWellFracture.h"
#include "RimStimPlanFractureTemplate.h"
#include "RimWellPath.h"
#include "cafProgressInfo.h"
#include <QFile>
#include <QString>
#include <QTextStream>
#include "RigStimPlanUpscalingCalc.h"
#include "RigTransmissibilityCondenser.h"
#include "RigWellPathStimplanIntersector.h"
#include "RigFractureGrid.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RifFractureExportTools::exportFracturesToEclipseDataInputFile(const QString& fileName, const std::vector< RimFracture*>& fractures, RimEclipseCase* caseToApply)
{
RiaLogging::info(QString("Computing and writing COMPDAT values to file %1").arg(fileName));
const RigMainGrid* mainGrid = caseToApply->eclipseCaseData()->mainGrid();
if (!mainGrid) return false;
QFile file(fileName);
if (!file.open(QIODevice::WriteOnly | QIODevice::Text))
{
return false;
}
caf::ProgressInfo pi(fractures.size(), QString("Writing data to file %1").arg(fileName));
size_t progress = 0;
std::vector<size_t> ijk;
QTextStream out(&file);
out << "\n";
out << "-- Exported from ResInsight" << "\n";
QString wellName;
{
RimEclipseWell* simWell = nullptr;
fractures[0]->firstAncestorOrThisOfType(simWell);
if ( simWell ) wellName = simWell->name;
RimWellPath* wellPath = nullptr;
fractures[0]->firstAncestorOrThisOfType(wellPath);
if ( wellPath ) wellName = wellPath->name;
}
RigEclipseCaseData::UnitsType caseUnit = caseToApply->eclipseCaseData()->unitsType();
if (caseUnit == RigEclipseCaseData::UNITS_METRIC) out << "-- Using metric unit system" << "\n";
if (caseUnit == RigEclipseCaseData::UNITS_FIELD) out << "-- Using field unit system" << "\n";
out << "\n";
//Included for debug / prototyping only
printTransmissibilityFractureToWell(fractures, out, caseToApply);
printStimPlanFractureTrans(fractures, caseToApply, out);
printStimPlanCellsMatrixTransContributions(fractures, caseToApply, out, wellName, mainGrid);
printBackgroundDataHeaderLine(out);
RiaLogging::debug(QString("Writing intermediate results from COMPDAT calculation"));
std::map<RimFracture*, std::vector<RigFracturedEclipseCellExportData> > exportDataPrFracture;
for (RimFracture* fracture : fractures)
{
RigFractureTransCalc transmissibilityCalculator(caseToApply, fracture);
//TODO: Check that there is a fracture template available for given fracture....
std::vector<RigFracturedEclipseCellExportData> fracDataVector = transmissibilityCalculator.computeTransmissibilityFromPolygonWithInfiniteConductivityInFracture();
exportDataPrFracture[fracture] = fracDataVector;
for (RigFracturedEclipseCellExportData fracData : fracDataVector)
{
printBackgroundData(out, wellName, fracture, mainGrid, fracData);
}
}
out << "\n";
out << qSetFieldWidth(7) << "COMPDAT" << "\n" << right << qSetFieldWidth(8);
for (RimFracture* fracture : fractures)
{
RiaLogging::debug(QString("Writing COMPDAT values for fracture %1").arg(fracture->name()));
std::vector<RigFracturedEclipseCellExportData> fracDataVector = exportDataPrFracture[fracture];
double skinFactor = cvf::UNDEFINED_DOUBLE;
if (fracture->fractureTemplate()) skinFactor = fracture->fractureTemplate()->skinFactor();
QString fractureName = fracture->name();
for (RigFracturedEclipseCellExportData fracData : fracDataVector)
{
if ( fracData.transmissibility > 0 )
{
size_t i, j, k;
mainGrid->ijkFromCellIndex(fracData.reservoirCellIndex, &i, &j, &k);
printCOMPDATvalues(out, fracData.transmissibility, i, j, k, fractureName, skinFactor, wellName);
}
}
//TODO: If same cell is used for multiple fractures, the sum of contributions should be added to table.
progress++;
pi.setProgress(progress);
}
out << "/ \n";
RiaLogging::info(QString("Competed writing COMPDAT data to file %1").arg(fileName));
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printCOMPDATvalues(QTextStream & out,
double transmissibility,
size_t i, size_t j, size_t k,
const QString& fractureName,
double skinFactor,
const QString& wellName)
{
out << qSetFieldWidth(8);
if (transmissibility == cvf::UNDEFINED_DOUBLE || skinFactor == cvf::UNDEFINED_DOUBLE)
{
out << "--"; //Commenting out line in output file
}
out << wellName;
out << qSetFieldWidth(5);
out << i + 1; // 2. I location grid block, adding 1 to go to eclipse 1-based grid definition
out << j + 1; // 3. J location grid block, adding 1 to go to eclipse 1-based grid definition
out << k + 1; // 4. K location of upper connecting grid block, adding 1 to go to eclipse 1-based grid definition
out << k + 1; // 5. K location of lower connecting grid block, adding 1 to go to eclipse 1-based grid definition
out << "2* "; // Default value for
//6. Open / Shut flag of connection
// 7. Saturation table number for connection rel perm. Default value
out << qSetFieldWidth(12);
// 8. Transmissibility
if (transmissibility != cvf::UNDEFINED_DOUBLE)
{
out << QString::number(transmissibility, 'e', 4);
}
else
{
out << "UNDEF";
}
out << qSetFieldWidth(4);
out << "2* "; // Default value for
// 9. Well bore diameter. Set to default
// 10. Effective Kh (perm times width)
if (skinFactor != cvf::UNDEFINED_DOUBLE)
{
out << skinFactor; // 11. Skin factor
}
else //If no attached fracture definition these parameters are set to UNDEF
{
out << "UNDEF";
}
out << "/";
out << " " << fractureName; //Fracture name as comment
out << "\n"; // Terminating entry
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printStimPlanCellsMatrixTransContributions(const std::vector<RimFracture *>& fractures,
RimEclipseCase* caseToApply,
QTextStream &out,
const QString& wellName,
const RigMainGrid* mainGrid)
{
out << "StimPlan cells' matrix transmissibility and Eclipse Cell contributions \n";
out << qSetFieldWidth(4);
out << "-- ";
out << qSetFieldWidth(12);
out << "Well name "; // 1. Well name
out << qSetFieldWidth(16);
out << "Fracture name ";
out << qSetFieldWidth(5);
out << "Ec i";
out << "Ec j";
out << "Ec k";
out << qSetFieldWidth(10);
out << "Ecl cell";
out << qSetFieldWidth(5);
out << "SP i";
out << "SP j";
out << qSetFieldWidth(10);
out << "Tm contr";
out << "\n";
for (RimFracture* fracture : fractures)
{
RimStimPlanFractureTemplate* fracTemplateStimPlan;
if (dynamic_cast<RimStimPlanFractureTemplate*>(fracture->fractureTemplate()))
{
fracTemplateStimPlan = dynamic_cast<RimStimPlanFractureTemplate*>(fracture->fractureTemplate());
}
else continue;
double cDarcyInCorrectUnit = caseToApply->eclipseCaseData()->darchysValue();
std::vector<RigFractureCell> stimPlanCells = fracTemplateStimPlan->fractureGrid()->fractureCells();
for (RigFractureCell stimPlanCell : stimPlanCells)
{
if (stimPlanCell.getConductivtyValue() < 1e-7)
{
continue;
}
RigEclipseToStimPlanCellTransmissibilityCalculator eclToStimPlanTransCalc(caseToApply,
fracture->transformMatrix(),
fracture->fractureTemplate()->skinFactor,
cDarcyInCorrectUnit,
stimPlanCell);
std::vector<size_t> stimPlanContributingEclipseCells = eclToStimPlanTransCalc.globalIndeciesToContributingEclipseCells();
std::vector<double> stimPlanContributingEclipseCellTransmissibilities = eclToStimPlanTransCalc.contributingEclipseCellTransmissibilities();
for (size_t i = 0; i < stimPlanContributingEclipseCells.size(); i++)
{
out << qSetFieldWidth(4);
out << "-- ";
out << qSetFieldWidth(12);
out << wellName + " ";
out << qSetFieldWidth(16);
out << fracture->name().left(15) + " ";
out << qSetFieldWidth(5);
size_t ii, jj, kk;
mainGrid->ijkFromCellIndex(stimPlanContributingEclipseCells[i], &ii, &jj, &kk);
out << ii + 1;
out << jj + 1;
out << kk + 1;
out << qSetFieldWidth(10);
out << stimPlanContributingEclipseCells[i];
out << qSetFieldWidth(5);
size_t spi = stimPlanCell.getI();
size_t spj = stimPlanCell.getJ();
out << spi;
out << spj;
out << qSetFieldWidth(10);
out << QString::number(stimPlanContributingEclipseCellTransmissibilities[i], 'e', 3);
out << "\n";
}
//TODO: add RigFractureStimPlanCellData to m_StimPlanCellsFractureData i RigFracture???
}
}
return;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printStimPlanFractureTrans(const std::vector<RimFracture *>& fractures, RimEclipseCase* caseToApply, QTextStream &out)
{
double cDarcyInCorrectUnit = caseToApply->eclipseCaseData()->darchysValue();
out << "StimPlan cells' fracture transmissibility \n";
out << qSetFieldWidth(4);
out << "-- ";
out << qSetFieldWidth(5);
out << "SP i";
out << "SP j";
out << qSetFieldWidth(10);
out << "Tf_hor";
out << "Tf_vert";
out << "\n";
if (fractures.size() < 1) return;
RimFracture* fracture = fractures[0];
RimStimPlanFractureTemplate* fracTemplateStimPlan;
if (dynamic_cast<RimStimPlanFractureTemplate*>(fracture->fractureTemplate()))
{
fracTemplateStimPlan = dynamic_cast<RimStimPlanFractureTemplate*>(fracture->fractureTemplate());
}
else return;
std::vector<RigFractureCell> stimPlanCells = fracTemplateStimPlan->fractureGrid()->fractureCells();
for (RigFractureCell stimPlanCell : stimPlanCells)
{
if (stimPlanCell.getConductivtyValue() < 1e-7)
{
//If conductivity in stimPlanCell is 0, contributions might not be relevant...
continue;
}
double verticalTrans = RigFractureTransmissibilityEquations::centerToEdgeFractureCellTrans(stimPlanCell.getConductivtyValue(),
stimPlanCell.cellSizeX(),
stimPlanCell.cellSizeZ(),
cDarcyInCorrectUnit);
double horizontalTrans = RigFractureTransmissibilityEquations::centerToEdgeFractureCellTrans(stimPlanCell.getConductivtyValue(),
stimPlanCell.cellSizeZ(),
stimPlanCell.cellSizeX(),
cDarcyInCorrectUnit);
out << qSetFieldWidth(5);
size_t spi = stimPlanCell.getI();
size_t spj = stimPlanCell.getJ();
out << spi;
out << spj;
out << qSetFieldWidth(10);
out << QString::number(verticalTrans, 'e', 3);
out << QString::number(horizontalTrans, 'e', 3);
out << "\n";
}
return;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printBackgroundDataHeaderLine(QTextStream & out)
{
out << "-- Background data for calculation" << "\n\n";
//Write header line
out << qSetFieldWidth(4);
out << "--";
out << qSetFieldWidth(12);
out << "Well ";
out << qSetFieldWidth(16);
out << "Fracture ";
out << qSetFieldWidth(5);
out << "i";
out << "j";
out << "k";
out << qSetFieldWidth(12);
out << "Ax";
out << "Ay";
out << "Az";
out << "TotArea";
out << "skinfac";
out << "FracLen";
out << qSetFieldWidth(10);
out << "DX";
out << "DY";
out << "DZ";
out << qSetFieldWidth(12);
out << "PermX";
out << "PermY";
out << "PermZ";
out << qSetFieldWidth(8);
out << "NTG";
out << qSetFieldWidth(12);
out << "T_x";
out << "T_y";
out << "T_z";
out << qSetFieldWidth(15);
out << "Transm";
out << qSetFieldWidth(20);
out << "Status";
out << "\n";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printBackgroundData(QTextStream & out, const QString& wellName, RimFracture* fracture, const RigMainGrid* mainGrid, RigFracturedEclipseCellExportData &fracData)
{
out << qSetFieldWidth(4);
out << "-- ";
out << qSetFieldWidth(12);
out << wellName + " ";
out << qSetFieldWidth(16);
out << fracture->name().left(15) + " ";
out << qSetFieldWidth(5);
size_t i, j, k;
mainGrid->ijkFromCellIndex(fracData.reservoirCellIndex, &i, &j, &k);
out << i + 1; // 2. I location grid block, adding 1 to go to eclipse 1-based grid definition
out << j + 1; // 3. J location grid block, adding 1 to go to eclipse 1-based grid definition
out << k + 1; // 4. K location of upper connecting grid block, adding 1 to go to eclipse 1-based grid definition
out << qSetFieldWidth(12);
//Use f for float, e for exponent float and g for best choice of these two.
out << QString::number(fracData.projectedAreas.x(), 'g', 4);
out << QString::number(fracData.projectedAreas.y(), 'g', 4);
out << QString::number(fracData.projectedAreas.z(), 'g', 4);
out << QString::number(fracData.totalArea, 'g', 4);
out << QString::number(fracData.skinFactor, 'f', 2);
out << QString::number(fracData.fractureLenght, 'g', 3);
out << qSetFieldWidth(10);
out << QString::number(fracData.cellSizes.x(), 'f', 2);
out << QString::number(fracData.cellSizes.y(), 'f', 2);
out << QString::number(fracData.cellSizes.z(), 'f', 2);
out << qSetFieldWidth(12);
out << QString::number(fracData.permeabilities.x(), 'e', 3);
out << QString::number(fracData.permeabilities.y(), 'e', 3);
out << QString::number(fracData.permeabilities.z(), 'e', 3);
out << qSetFieldWidth(8);
out << QString::number(fracData.NTG, 'f', 2);
out << qSetFieldWidth(12);
out << QString::number(fracData.transmissibilities.x(), 'e', 3);
out << QString::number(fracData.transmissibilities.y(), 'e', 3);
out << QString::number(fracData.transmissibilities.z(), 'e', 3);
out << qSetFieldWidth(15);
out << QString::number(fracData.transmissibility, 'e', 3);
if (!fracData.cellIsActive)
{
out << qSetFieldWidth(20);
out << " INACTIVE CELL ";
}
else if (fracData.cellIsActive && fracData.transmissibility > 0)
{
out << qSetFieldWidth(20);
out << " ACTIVE CELL ";
}
else
{
out << qSetFieldWidth(20);
out << " INVALID DATA ";
}
out << "\n";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifFractureExportTools::printTransmissibilityFractureToWell(const std::vector<RimFracture *>& fractures, QTextStream &out, RimEclipseCase* caseToApply)
{
out << "-- Transmissibility From Fracture To Well \n";
out << qSetFieldWidth(12);
out << "Well name ";
out << qSetFieldWidth(16);
out << "Fracture name ";
out << "Inflow type ";
out << qSetFieldWidth(5);
out << " i ";
out << " j ";
out << "Tw";
out << "\n";
for (RimFracture* fracture : fractures)
{
out << qSetFieldWidth(12);
RimEclipseWell* simWell = nullptr;
RimWellPath* wellPath = nullptr;
fracture->firstAncestorOrThisOfType(simWell);
if (simWell) out << simWell->name + " "; // 1. Well name
fracture->firstAncestorOrThisOfType(wellPath);
if (wellPath) out << wellPath->name + " "; // 1. Well name
out << qSetFieldWidth(16);
out << fracture->name().left(15) + " ";
if (fracture->fractureTemplate()->orientationType == RimFractureTemplate::ALONG_WELL_PATH)
{
out << "Linear inflow";
out << qSetFieldWidth(5);
RimStimPlanFractureTemplate* fracTemplateStimPlan;
if (dynamic_cast<RimStimPlanFractureTemplate*>(fracture->fractureTemplate()))
{
fracTemplateStimPlan = dynamic_cast<RimStimPlanFractureTemplate*>(fracture->fractureTemplate());
}
else continue;
//TODO: Can be removed when implementation of dip angle is more general:
RimSimWellFracture* simWellFrac;
if (dynamic_cast<RimSimWellFracture*>(fracture))
{
simWellFrac = dynamic_cast<RimSimWellFracture*>(fracture);
}
else continue;
double wellDip = simWellFrac->wellDipAtFracturePosition();
double perforationLengthVert = fracture->perforationLength * cos(wellDip);
double perforationLengthHor = fracture->perforationLength * sin(wellDip);
std::pair<size_t, size_t> wellCenterStimPlanCellIJ = fracTemplateStimPlan->fractureGrid()->fractureCellAtWellCenter();
out << qSetFieldWidth(5);
out << wellCenterStimPlanCellIJ.first;
out << wellCenterStimPlanCellIJ.second;
//RigStimPlanCell* stimPlanCell = fracTemplateStimPlan->getStimPlanCellAtIJ(wellCenterStimPlanCellIJ.first, wellCenterStimPlanCellIJ.second);
const RigFractureCell& stimPlanCell = fracTemplateStimPlan->fractureGrid()->cellFromIndex(fracTemplateStimPlan->fractureGrid()->getGlobalIndexFromIJ(wellCenterStimPlanCellIJ.first, wellCenterStimPlanCellIJ.second));
double linTransInStimPlanCell = RigFractureTransmissibilityEquations::fractureCellToWellLinearTrans(stimPlanCell.getConductivtyValue(),
stimPlanCell.cellSizeX(),
stimPlanCell.cellSizeZ(),
perforationLengthVert,
perforationLengthHor,
fracture->perforationEfficiency,
fracture->fractureTemplate()->skinFactor(),
caseToApply->eclipseCaseData()->darchysValue());
out << qSetFieldWidth(10);
out << QString::number(linTransInStimPlanCell, 'f', 2);
out << "\n";
}
if (fracture->fractureTemplate()->orientationType == RimFractureTemplate::TRANSVERSE_WELL_PATH
|| fracture->fractureTemplate()->orientationType == RimFractureTemplate::AZIMUTH)
{
out << "Radial inflow";
RimStimPlanFractureTemplate* fracTemplateStimPlan;
if (dynamic_cast<RimStimPlanFractureTemplate*>(fracture->fractureTemplate()))
{
fracTemplateStimPlan = dynamic_cast<RimStimPlanFractureTemplate*>(fracture->fractureTemplate());
}
else continue;
std::pair<size_t, size_t> wellCenterStimPlanCellIJ = fracTemplateStimPlan->fractureGrid()->fractureCellAtWellCenter();
out << qSetFieldWidth(5);
out << wellCenterStimPlanCellIJ.first;
out << wellCenterStimPlanCellIJ.second;
const RigFractureCell& stimPlanCell = fracTemplateStimPlan->fractureGrid()->cellFromIndex(fracTemplateStimPlan->fractureGrid()->getGlobalIndexFromIJ(wellCenterStimPlanCellIJ.first, wellCenterStimPlanCellIJ.second));
double radTransInStimPlanCell = RigFractureTransmissibilityEquations::fractureCellToWellRadialTrans(stimPlanCell.getConductivtyValue(),
stimPlanCell.cellSizeX(),
stimPlanCell.cellSizeZ(),
fracture->wellRadius(),
fracture->fractureTemplate()->skinFactor(),
caseToApply->eclipseCaseData()->darchysValue());
out << qSetFieldWidth(10);
out << QString::number(radTransInStimPlanCell, 'f', 2);
out << "\n";
}
}
out << "\n";
}