ResInsight/ApplicationCode/Application/Tools/RiaArcCurveCalculator.cpp

104 lines
3.2 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2018- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RiaArcCurveCalculator.h"
#include "RiaOffshoreSphericalCoords.h"
#include "cvfGeometryTools.h"
//--------------------------------------------------------------------------------------------------
/// + p1
/// t1 //
/// | + C
/// \
/// + p2
//--------------------------------------------------------------------------------------------------
RiaArcCurveCalculator::RiaArcCurveCalculator(cvf::Vec3d p1, cvf::Vec3d t1, cvf::Vec3d p2)
: m_radius(std::numeric_limits<double>::infinity())
, m_arcCS(cvf::Mat4d::ZERO)
, m_endAzi(0)
, m_endInc(0)
, m_curveStatus(OK)
{
bool isOk = t1.normalize();
if (!isOk)
{
// No tangent. Bail out
m_curveStatus = FAILED_INPUT_OVERLAP;
return;
}
cvf::Vec3d p1p2 = p2 - p1;
cvf::Vec3d t12 = p1p2.getNormalized(&isOk);
if (!isOk)
{
// p1 and p2 in the same place.
m_curveStatus = FAILED_INPUT_OVERLAP;
return;
}
cvf::Vec3d N = (t1 ^ t12).getNormalized(&isOk);
if (!isOk)
{
// P2 is on the p1 + k*t1 line. We have a straight line
m_curveStatus = OK_STRAIGHT_LINE;
RiaOffshoreSphericalCoords endTangent(t1);
m_endTangent = t1;
m_endAzi = endTangent.azi();
m_endInc = endTangent.inc();
m_radius = std::numeric_limits<double>::infinity();
m_arcAngle = 0;
m_arcLength = p1p2.length();
return;
}
cvf::Vec3d tr1 = (N ^ t1).getNormalized();
m_radius = 0.5 * p1p2.length() / (tr1.dot(t12));
cvf::Vec3d C = p1 + m_radius * tr1;
cvf::Vec3d nTr1 = -tr1;
m_arcCS = cvf::Mat4d::fromCoordSystemAxes( &nTr1, &t1, &N );
m_arcCS.setTranslation(C);
m_arcAngle = cvf::GeometryTools::getAngle(N, p1 - C, p2 - C);
m_arcLength = m_radius*m_arcAngle;
m_endTangent = N ^ (p2 - C).getNormalized();
RiaOffshoreSphericalCoords endTangent(m_endTangent);
m_endAzi = endTangent.azi();
m_endInc = endTangent.inc();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RiaArcCurveCalculator::RiaArcCurveCalculator(cvf::Vec3d p1, double azi1, double inc1, cvf::Vec3d p2)
{
cvf::Vec3d t1( RiaOffshoreSphericalCoords::unitVectorFromAziInc(azi1,inc1));
(*this) = RiaArcCurveCalculator(p1, t1, p2);
}