ResInsight/ApplicationCode/ReservoirDataModel/RigCaseCellResultsData.h

198 lines
14 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011- Statoil ASA
// Copyright (C) 2013- Ceetron Solutions AS
// Copyright (C) 2011-2012 Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "RiaDefines.h"
#include "RiaPorosityModel.h"
#include "RigEclipseResultAddress.h"
#include "cvfCollection.h"
#include <QDateTime>
#include <vector>
#include <cmath>
class RifReaderInterface;
class RigActiveCellInfo;
class RigMainGrid;
class RigEclipseResultInfo;
class RigStatisticsDataCache;
class RigEclipseTimeStepInfo;
class RigEclipseCaseData;
class RigFormationNames;
class RimEclipseCase;
//==================================================================================================
/// Class containing the results for the complete number of active cells. Both main grid and LGR's
//==================================================================================================
class RigCaseCellResultsData : public cvf::Object
{
public:
explicit RigCaseCellResultsData(RigEclipseCaseData* ownerCaseData, RiaDefines::PorosityModelType porosityModel);
// Initialization
void setReaderInterface(RifReaderInterface* readerInterface);
void setHdf5Filename(const QString& hdf5SourSimFilename );
void setActiveFormationNames(RigFormationNames* activeFormationNames);
RigFormationNames* activeFormationNames();
void setMainGrid(RigMainGrid* ownerGrid);
void setActiveCellInfo(RigActiveCellInfo* activeCellInfo);
RigActiveCellInfo* activeCellInfo();
const RigActiveCellInfo* activeCellInfo() const;
// Access the results data
const std::vector< std::vector<double> > & cellScalarResults(const RigEclipseResultAddress& resVarAddr) const;
const std::vector<double>& cellScalarResults(const RigEclipseResultAddress& resVarAddr, size_t timeStepIndex) const;
std::vector< std::vector<double> > & modifiableCellScalarResultTimesteps(const RigEclipseResultAddress& resVarAddr);
std::vector<double>& modifiableCellScalarResult(const RigEclipseResultAddress& resVarAddr, size_t timeStepIndex);
bool isUsingGlobalActiveIndex(const RigEclipseResultAddress& resVarAddr) const;
static const std::vector<double>* getResultIndexableStaticResult(RigActiveCellInfo* actCellInfo,
RigCaseCellResultsData* gridCellResults,
QString porvResultName,
std::vector<double> &activeCellsResultsTempContainer);
// Statistic values of the results
void recalculateStatistics(const RigEclipseResultAddress& resVarAddr);
void minMaxCellScalarValues(const RigEclipseResultAddress& resVarAddr, double& min, double& max);
void minMaxCellScalarValues(const RigEclipseResultAddress& resVarAddr, size_t timeStepIndex, double& min, double& max);
void posNegClosestToZero(const RigEclipseResultAddress& resVarAddr, double& pos, double& neg);
void posNegClosestToZero(const RigEclipseResultAddress& resVarAddr, size_t timeStepIndex, double& pos, double& neg);
const std::vector<size_t>& cellScalarValuesHistogram(const RigEclipseResultAddress& resVarAddr);
const std::vector<size_t>& cellScalarValuesHistogram(const RigEclipseResultAddress& resVarAddr, size_t timeStepIndex);
void p10p90CellScalarValues(const RigEclipseResultAddress& resVarAddr, double& p10, double& p90);
void p10p90CellScalarValues(const RigEclipseResultAddress& resVarAddr, size_t timeStepIndex, double& p10, double& p90);
void meanCellScalarValues(const RigEclipseResultAddress& resVarAddr, double& meanValue);
void meanCellScalarValues(const RigEclipseResultAddress& resVarAddr, size_t timeStepIndex, double& meanValue);
const std::vector<int>& uniqueCellScalarValues(const RigEclipseResultAddress& resVarAddr);
void sumCellScalarValues(const RigEclipseResultAddress& resVarAddr, double& sumValue);
void sumCellScalarValues(const RigEclipseResultAddress& resVarAddr, size_t timeStepIndex, double& sumValue);
void mobileVolumeWeightedMean(const RigEclipseResultAddress& resVarAddr, double& meanValue);
void mobileVolumeWeightedMean(const RigEclipseResultAddress& resVarAddr, size_t timeStepIndex, double& meanValue);
// Access meta-information about the results
size_t timeStepCount(const RigEclipseResultAddress& resVarAddr) const;
size_t maxTimeStepCount(RigEclipseResultAddress* resultAddressWithMostTimeSteps = nullptr) const;
std::vector<QDateTime> allTimeStepDatesFromEclipseReader() const;
std::vector<QDateTime> timeStepDates() const;
std::vector<QDateTime> timeStepDates(const RigEclipseResultAddress& resVarAddr) const;
std::vector<double> daysSinceSimulationStart() const;
std::vector<double> daysSinceSimulationStart(const RigEclipseResultAddress& resVarAddr) const;
int reportStepNumber(const RigEclipseResultAddress& resVarAddr, size_t timeStepIndex) const;
std::vector<RigEclipseTimeStepInfo> timeStepInfos(const RigEclipseResultAddress& resVarAddr) const;
void setTimeStepInfos(const RigEclipseResultAddress& resVarAddr, const std::vector<RigEclipseTimeStepInfo>& timeStepInfos);
void clearScalarResult(RiaDefines::ResultCatType type, const QString & resultName);
void clearScalarResult(const RigEclipseResultAddress& resultAddress);
void clearAllResults();
void freeAllocatedResultsData();
void eraseAllSourSimData();
QStringList resultNames(RiaDefines::ResultCatType type) const;
std::vector<RigEclipseResultAddress> existingResults() const;
const RigEclipseResultInfo* resultInfo(const RigEclipseResultAddress& resVarAddr) const;
bool updateResultName(RiaDefines::ResultCatType resultType, QString& oldName, const QString& newName);
QString makeResultNameUnique(const QString& resultNameProposal) const;
void ensureKnownResultLoadedForTimeStep(const RigEclipseResultAddress& resultAddress, size_t timeStepIndex);
bool ensureKnownResultLoaded(const RigEclipseResultAddress& resultAddress);
bool hasResultEntry(const RigEclipseResultAddress& resultAddress) const;
bool isResultLoaded(const RigEclipseResultAddress& resultAddress) const;
void createResultEntry(const RigEclipseResultAddress& resultAddress, bool needsToBeStored);
void createPlaceholderResultEntries();
void computeDepthRelatedResults();
void computeCellVolumes();
bool hasFlowDiagUsableFluxes() const;
static void copyResultsMetaDataFromMainCase(RigEclipseCaseData* mainCaseResultsData,
RiaDefines::PorosityModelType poroModel,
std::vector<RimEclipseCase*> destinationCases);
private:
size_t findOrLoadKnownScalarResult(const RigEclipseResultAddress& resVarAddr);
size_t findOrLoadKnownScalarResultForTimeStep(const RigEclipseResultAddress& resVarAddr,
size_t timeStepIndex);
size_t findOrCreateScalarResultIndex(const RigEclipseResultAddress& resVarAddr, bool needsToBeStored);
size_t findScalarResultIndexFromAddress(const RigEclipseResultAddress& resVarAddr ) const;
size_t addStaticScalarResult(RiaDefines::ResultCatType type,
const QString& resultName,
bool needsToBeStored,
size_t resultValueCount);
const std::vector<RigEclipseResultInfo>& infoForEachResultIndex();
size_t resultCount() const;
bool mustBeCalculated(size_t scalarResultIndex) const;
void setMustBeCalculated(size_t scalarResultIndex);
void computeSOILForTimeStep(size_t timeStepIndex);
void testAndComputeSgasForTimeStep(size_t timeStepIndex);
bool hasCompleteTransmissibilityResults() const;
void computeRiTransComponent(const QString& riTransComponentResultName);
void computeNncCombRiTrans();
void computeRiMULTComponent(const QString& riMultCompName);
void computeNncCombRiMULT();
void computeRiTRANSbyAreaComponent(const QString& riTransByAreaCompResultName);
void computeNncCombRiTRANSbyArea();
void computeCompletionTypeForTimeStep(size_t timeStep);
double darchysValue();
void computeOilVolumes();
void computeMobilePV();
bool isDataPresent(size_t scalarResultIndex) const;
void assignValuesToTemporaryLgrs(const QString& resultName, std::vector<double>& values);
RigStatisticsDataCache* statistics(const RigEclipseResultAddress& resVarAddr);
private:
cvf::ref<RifReaderInterface> m_readerInterface;
cvf::ref<RigFormationNames> m_activeFormationNamesData;
std::vector< std::vector< std::vector<double> > > m_cellScalarResults; ///< Scalar results on the complete reservoir for each Result index (ResultVariable) and timestep
cvf::Collection<RigStatisticsDataCache> m_statisticsDataCache;
std::vector<RigEclipseResultInfo> m_resultInfos;
RigMainGrid* m_ownerMainGrid;
RigEclipseCaseData* m_ownerCaseData;
RigActiveCellInfo* m_activeCellInfo;
RiaDefines::PorosityModelType m_porosityModel;
};