ResInsight/ApplicationLibCode/ProjectDataModel/WellLog/RimWellLogRftCurve.cpp
Magne Sjaastad 7a782cec66
RFT ensemble refactoring
* Compute average MD for intersections with a cell
* Create extractor for simulation well
* Remove rftReader from RifDataSourceForRftPlt
* Add function compute measured depth for RFT cells based on well path geometry
* Move statistics reader to well ensemble curve set
* Make sure both TVD and MD are cached if possible
* Add selection of grid case to use for estimation of measured depth (MD)
Add "Grid Model For MD" where the user can select a grid model. This grid model is propagated to a hidden field in EnsembleCurveSet. The grid model is then applied to RifReaderEnsembleStatisticsRft owned by EnsembleCurveSet
2023-09-04 10:08:30 +02:00

1248 lines
46 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimWellLogRftCurve.h"
#include "RiaColorTables.h"
#include "RiaColorTools.h"
#include "RiaDefines.h"
#include "RiaEclipseUnitTools.h"
#include "RiaExtractionTools.h"
#include "RiaQDateTimeTools.h"
#include "RiaResultNames.h"
#include "RiaRftDefines.h"
#include "RiaSimWellBranchTools.h"
#include "RiaStatisticsTools.h"
#include "RiaSummaryTools.h"
#include "RiaTextStringTools.h"
#include "RifEclipseRftAddress.h"
#include "RifReaderEclipseRft.h"
#include "RigEclipseCaseData.h"
#include "RigEclipseWellLogExtractor.h"
#include "RigMainGrid.h"
#include "RigWellLogCurveData.h"
#include "RigWellPath.h"
#include "RigWellPathGeometryTools.h"
#include "RigWellPathIntersectionTools.h"
#include "RimDepthTrackPlot.h"
#include "RimEclipseResultCase.h"
#include "RimFileSummaryCase.h"
#include "RimObservedFmuRftData.h"
#include "RimPressureDepthData.h"
#include "RimProject.h"
#include "RimRftTools.h"
#include "RimSummaryCase.h"
#include "RimSummaryCaseCollection.h"
#include "RimTools.h"
#include "RimWellLogPlot.h"
#include "RimWellLogTrack.h"
#include "RimWellPath.h"
#include "RimWellPlotTools.h"
#include "RimWellRftPlot.h"
#include "RiuQwtPlotCurve.h"
#include "RiuQwtPlotWidget.h"
#include "cafPdmObject.h"
#include "cafVecIjk.h"
#include "cvfAssert.h"
#include <qwt_plot.h>
#include <QString>
#include <numeric>
#include <vector>
namespace caf
{
template <>
void caf::AppEnum<RifEclipseRftAddress::RftWellLogChannelType>::setUp()
{
addItem( RifEclipseRftAddress::RftWellLogChannelType::NONE, "NONE", "None" );
addItem( RifEclipseRftAddress::RftWellLogChannelType::TVD, "DEPTH", "Depth" );
addItem( RifEclipseRftAddress::RftWellLogChannelType::PRESSURE, "PRESSURE", "Pressure" );
addItem( RifEclipseRftAddress::RftWellLogChannelType::SWAT, RiaResultNames::swat(), "Water Saturation" );
addItem( RifEclipseRftAddress::RftWellLogChannelType::SOIL, RiaResultNames::soil(), "Oil Saturation" );
addItem( RifEclipseRftAddress::RftWellLogChannelType::SGAS, RiaResultNames::sgas(), "Gas Saturation" );
addItem( RifEclipseRftAddress::RftWellLogChannelType::WRAT, "WRAT", "Water Flow" );
addItem( RifEclipseRftAddress::RftWellLogChannelType::ORAT, "ORAT", "Oil Flow" );
addItem( RifEclipseRftAddress::RftWellLogChannelType::GRAT, "GRAT", "Gas flow" );
addItem( RifEclipseRftAddress::RftWellLogChannelType::MD, "MD", "Measured Depth" );
addItem( RifEclipseRftAddress::RftWellLogChannelType::PRESSURE_P10, "PRESSURE_P10", "P10: Pressure" );
addItem( RifEclipseRftAddress::RftWellLogChannelType::PRESSURE_P50, "PRESSURE_P50", "P50: Pressure" );
addItem( RifEclipseRftAddress::RftWellLogChannelType::PRESSURE_P90, "PRESSURE_P90", "P90: Pressure" );
addItem( RifEclipseRftAddress::RftWellLogChannelType::PRESSURE_MEAN, "PRESSURE_MEAN", "Mean: Pressure" );
addItem( RifEclipseRftAddress::RftWellLogChannelType::PRESSURE_ERROR, "PRESSURE_ERROR", "Error: Pressure" );
setDefault( RifEclipseRftAddress::RftWellLogChannelType::NONE );
}
} // namespace caf
namespace caf
{
template <>
void caf::AppEnum<RimWellLogRftCurve::RftDataType>::setUp()
{
addItem( RimWellLogRftCurve::RftDataType::RFT_DATA, "RFT_DATA", "RFT" );
addItem( RimWellLogRftCurve::RftDataType::RFT_SEGMENT_DATA, "RFT_SEGMENT_DATA", "RFT Segment" );
setDefault( RimWellLogRftCurve::RftDataType::RFT_DATA );
}
} // namespace caf
CAF_PDM_SOURCE_INIT( RimWellLogRftCurve, "WellLogRftCurve" );
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RiaDefines::PhaseType RimWellLogRftCurve::phaseType() const
{
if ( m_rftDataType() == RimWellLogRftCurve::RftDataType::RFT_DATA )
{
if ( m_wellLogChannelName() == RifEclipseRftAddress::RftWellLogChannelType::SWAT ||
m_wellLogChannelName() == RifEclipseRftAddress::RftWellLogChannelType::WRAT )
{
return RiaDefines::PhaseType::WATER_PHASE;
}
if ( m_wellLogChannelName() == RifEclipseRftAddress::RftWellLogChannelType::SGAS ||
m_wellLogChannelName() == RifEclipseRftAddress::RftWellLogChannelType::GRAT )
{
return RiaDefines::PhaseType::GAS_PHASE;
}
if ( m_wellLogChannelName() == RifEclipseRftAddress::RftWellLogChannelType::SOIL ||
m_wellLogChannelName() == RifEclipseRftAddress::RftWellLogChannelType::ORAT )
{
return RiaDefines::PhaseType::OIL_PHASE;
}
}
else if ( m_rftDataType() == RimWellLogRftCurve::RftDataType::RFT_SEGMENT_DATA )
{
if ( m_segmentResultName().startsWith( "SEGO" ) ) return RiaDefines::PhaseType::OIL_PHASE;
if ( m_segmentResultName().startsWith( "SEGW" ) ) return RiaDefines::PhaseType::WATER_PHASE;
if ( m_segmentResultName().startsWith( "SEGG" ) ) return RiaDefines::PhaseType::GAS_PHASE;
}
return RiaDefines::PhaseType::PHASE_NOT_APPLICABLE;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimWellLogRftCurve::RimWellLogRftCurve()
{
CAF_PDM_InitObject( "Well Log RFT Curve", RimWellLogCurve::wellLogCurveIconName() );
CAF_PDM_InitFieldNoDefault( &m_eclipseCase, "CurveEclipseResultCase", "Eclipse Result Case" );
m_eclipseCase.uiCapability()->setUiTreeChildrenHidden( true );
CAF_PDM_InitFieldNoDefault( &m_summaryCase, "CurveSummaryCase", "Summary Case" );
m_summaryCase.uiCapability()->setUiTreeChildrenHidden( true );
CAF_PDM_InitFieldNoDefault( &m_ensemble, "CurveEnsemble", "Ensemble" );
m_ensemble.uiCapability()->setUiTreeChildrenHidden( true );
CAF_PDM_InitFieldNoDefault( &m_observedFmuRftData, "ObservedFmuRftData", "Observed FMU RFT Data" );
m_observedFmuRftData.uiCapability()->setUiTreeChildrenHidden( true );
CAF_PDM_InitFieldNoDefault( &m_pressureDepthData, "PressureDepthData", "Pressure Depth Data" );
m_pressureDepthData.uiCapability()->setUiTreeChildrenHidden( true );
CAF_PDM_InitFieldNoDefault( &m_timeStep, "TimeStep", "Time Step" );
CAF_PDM_InitFieldNoDefault( &m_wellName, "WellName", "Well Name" );
CAF_PDM_InitField( &m_branchIndex, "BranchIndex", 0, "Branch Index" );
CAF_PDM_InitField( &m_branchDetection,
"BranchDetection",
true,
"Branch Detection",
"",
"Compute branches based on how simulation well cells are organized",
"" );
CAF_PDM_InitFieldNoDefault( &m_wellLogChannelName, "WellLogChannelName", "Well Property" );
CAF_PDM_InitFieldNoDefault( &m_rftDataType, "RftDataType", "Data Type" );
CAF_PDM_InitField( &m_segmentResultName, "SegmentResultName", RiaResultNames::undefinedResultName(), "Result Name" );
CAF_PDM_InitField( &m_segmentBranchIndex, "SegmentBranchIndex", -1, "Branch" );
CAF_PDM_InitFieldNoDefault( &m_segmentBranchType, "SegmentBranchType", "Completion" );
CAF_PDM_InitField( &m_scaleFactor, "ScaleFactor", 1.0, "Scale Factor" );
CAF_PDM_InitField( &m_curveColorByPhase, "CurveColorByPhase", false, "Color by Phase" );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimWellLogRftCurve::~RimWellLogRftCurve()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::setWellName( const QString& wellName )
{
m_wellName = wellName;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimWellLogRftCurve::wellName() const
{
return m_wellName;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimWellLogRftCurve::wellLogChannelUiName() const
{
return m_wellLogChannelName().text();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimWellLogRftCurve::wellLogChannelUnits() const
{
return RiaWellLogUnitTools<double>::noUnitString();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::setTimeStep( const QDateTime& dateTime )
{
m_timeStep = dateTime;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QDateTime RimWellLogRftCurve::timeStep() const
{
return m_timeStep();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::setSegmentBranchIndex( int branchIndex )
{
m_segmentBranchIndex = branchIndex;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::setSegmentBranchType( RiaDefines::RftBranchType branchType )
{
m_segmentBranchType = branchType;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::setEclipseCase( RimEclipseCase* eclipseCase )
{
m_eclipseCase = eclipseCase;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimEclipseCase* RimWellLogRftCurve::eclipseCase() const
{
return m_eclipseCase;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::setSummaryCase( RimSummaryCase* summaryCase )
{
m_summaryCase = summaryCase;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimSummaryCase* RimWellLogRftCurve::summaryCase() const
{
return m_summaryCase;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::setEnsemble( RimSummaryCaseCollection* ensemble )
{
m_ensemble = ensemble;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimSummaryCaseCollection* RimWellLogRftCurve::ensemble() const
{
return m_ensemble;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::setObservedFmuRftData( RimObservedFmuRftData* observedFmuRftData )
{
m_observedFmuRftData = observedFmuRftData;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimObservedFmuRftData* RimWellLogRftCurve::observedFmuRftData() const
{
return m_observedFmuRftData;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::setPressureDepthData( RimPressureDepthData* observedFmuRftData )
{
m_pressureDepthData = observedFmuRftData;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimPressureDepthData* RimWellLogRftCurve::pressureDepthData() const
{
return m_pressureDepthData;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::setRftAddress( RifEclipseRftAddress address )
{
m_timeStep = address.timeStep();
m_wellName = address.wellName();
m_wellLogChannelName = address.wellLogChannel();
if ( address.wellLogChannel() == RifEclipseRftAddress::RftWellLogChannelType::SEGMENT_VALUES )
{
m_rftDataType = RftDataType::RFT_SEGMENT_DATA;
m_segmentResultName = address.segmentResultName();
m_segmentBranchIndex = address.segmentBranchIndex();
m_segmentBranchType = address.segmentBranchType();
}
else
{
m_rftDataType = RftDataType::RFT_DATA;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RifEclipseRftAddress RimWellLogRftCurve::rftAddress() const
{
if ( m_rftDataType == RftDataType::RFT_SEGMENT_DATA )
{
return RifEclipseRftAddress::createBranchSegmentAddress( m_wellName,
m_timeStep,
m_segmentResultName(),
m_segmentBranchIndex(),
m_segmentBranchType() );
}
return RifEclipseRftAddress::createAddress( m_wellName, m_timeStep, m_wellLogChannelName() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::setDefaultAddress( QString wellName )
{
RifReaderRftInterface* reader = rftReader();
if ( !reader ) return;
bool wellNameHasRftData = false;
std::set<QString> wellNames = reader->wellNames();
for ( const QString& wellNameWithRft : wellNames )
{
if ( wellName == wellNameWithRft )
{
wellNameHasRftData = true;
m_wellName = wellName;
break;
}
}
if ( !wellNameHasRftData )
{
m_wellLogChannelName = RifEclipseRftAddress::RftWellLogChannelType::NONE;
m_timeStep = QDateTime();
return;
}
m_wellLogChannelName = RifEclipseRftAddress::RftWellLogChannelType::PRESSURE;
std::set<QDateTime> timeSteps = reader->availableTimeSteps( m_wellName, m_wellLogChannelName() );
if ( !timeSteps.empty() )
{
m_timeStep = *( timeSteps.begin() );
}
else
{
m_timeStep = QDateTime();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::updateWellChannelNameAndTimeStep()
{
if ( !m_timeStep().isValid() || m_wellLogChannelName() == RifEclipseRftAddress::RftWellLogChannelType::NONE )
{
setDefaultAddress( m_wellName );
return;
}
RifReaderRftInterface* reader = rftReader();
if ( !reader ) return;
std::set<RifEclipseRftAddress::RftWellLogChannelType> channelNames = reader->availableWellLogChannels( m_wellName );
if ( channelNames.empty() )
{
m_wellLogChannelName = RifEclipseRftAddress::RftWellLogChannelType::NONE;
}
else if ( !channelNames.count( m_wellLogChannelName() ) )
{
m_wellLogChannelName = RifEclipseRftAddress::RftWellLogChannelType::PRESSURE;
}
std::set<QDateTime> timeSteps = reader->availableTimeSteps( m_wellName, m_wellLogChannelName() );
if ( timeSteps.empty() )
{
m_timeStep = QDateTime();
}
else if ( !timeSteps.count( m_timeStep() ) )
{
m_timeStep = *( timeSteps.begin() );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::setSimWellBranchData( bool branchDetection, int branchIndex )
{
m_branchDetection = branchDetection;
m_branchIndex = branchIndex;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::enableColorFromResultName( bool enable )
{
m_curveColorByPhase = enable;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::assignColorFromResultName( const QString& resultName )
{
cvf::Color3f color = cvf::Color3f::BLACK;
if ( resultName.startsWith( "SEGO" ) || resultName.startsWith( "CONO" ) || resultName.startsWith( "SOIL" ) )
{
color = RiaColorTables::summaryCurveGreenPaletteColors().cycledColor3f( 0 );
}
else if ( resultName.startsWith( "SEGW" ) || resultName.startsWith( "CONW" ) || resultName.startsWith( "SWAT" ) )
{
color = RiaColorTables::summaryCurveBluePaletteColors().cycledColor3f( 0 );
}
else if ( resultName.startsWith( "SEGG" ) || resultName.startsWith( "CONG" ) || resultName.startsWith( "SGAS" ) )
{
color = RiaColorTables::summaryCurveRedPaletteColors().cycledColor3f( 0 );
}
// Do nothing if not phase is identified
if ( color == cvf::Color3f::BLACK ) return;
float scalingFactor = 0.5;
auto fillColor = RiaColorTools::makeLighter( color, scalingFactor );
setColor( color );
setFillColor( fillColor );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::setScaleFactor( double factor )
{
m_scaleFactor = factor;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::map<QString, QString> RimWellLogRftCurve::createCurveNameKeyValueMap() const
{
std::map<QString, QString> variableValueMap;
if ( !wellName().isEmpty() )
{
variableValueMap[RiaDefines::namingVariableWell()] = wellName();
}
variableValueMap[RiaDefines::namingVariableResultType()] = "RFT";
QString caseText;
if ( m_eclipseCase )
{
caseText = m_eclipseCase->caseUserDescription();
}
else if ( m_summaryCase && m_ensemble ) // Summary RFT curves have both ensemble and summary set
{
caseText = QString( "%1, %2" ).arg( m_ensemble->name() ).arg( m_summaryCase->displayCaseName() );
}
else if ( m_ensemble )
{
caseText = m_ensemble->name();
}
else if ( m_summaryCase )
{
caseText = m_summaryCase->displayCaseName();
}
else if ( m_observedFmuRftData )
{
caseText = m_observedFmuRftData->name();
}
if ( !caseText.isEmpty() )
{
variableValueMap[RiaDefines::namingVariableCase()] = caseText;
}
if ( m_rftDataType() == RftDataType::RFT_DATA )
{
if ( wellLogChannelUiName() !=
caf::AppEnum<RifEclipseRftAddress::RftWellLogChannelType>::text( RifEclipseRftAddress::RftWellLogChannelType::NONE ) )
{
RifEclipseRftAddress::RftWellLogChannelType channelNameEnum =
caf::AppEnum<RifEclipseRftAddress::RftWellLogChannelType>::fromText( wellLogChannelUiName() );
QString channelName = caf::AppEnum<RifEclipseRftAddress::RftWellLogChannelType>::uiText( channelNameEnum );
variableValueMap[RiaDefines::namingVariableResultName()] = channelName;
}
}
else if ( m_rftDataType() == RftDataType::RFT_SEGMENT_DATA )
{
variableValueMap[RiaDefines::namingVariableResultName()] = m_segmentResultName;
QString branchText = QString( "Branch %1" ).arg( m_segmentBranchIndex() );
variableValueMap[RiaDefines::namingVariableWellBranch()] = branchText;
if ( isSegmentResult( m_segmentResultName() ) )
{
variableValueMap[RiaDefines::namingVariableResultType()] = m_segmentBranchType().uiText();
}
else
{
variableValueMap[RiaDefines::namingVariableResultType()] = "Reservoir";
}
}
if ( !m_timeStep().isNull() )
{
variableValueMap[RiaDefines::namingVariableTime()] = m_timeStep().toString( RiaQDateTimeTools::dateFormatString() );
}
return variableValueMap;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimWellLogRftCurve::createCurveAutoName()
{
QStringList curveNameSubStrings;
for ( const auto& [key, value] : createCurveNameKeyValueMap() )
{
curveNameSubStrings.push_back( value );
}
return curveNameSubStrings.join( ", " );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimWellLogRftCurve::createCurveNameFromTemplate( const QString& templateText )
{
auto name = RiaTextStringTools::replaceTemplateTextWithValues( templateText, createCurveNameKeyValueMap() );
if ( m_scaleFactor() != 1.0 )
{
int exponent = std::log10( m_scaleFactor() );
auto text = QString( "x1e%1" ).arg( QString::number( exponent ) );
name += QString( " [%1]" ).arg( text );
}
return name;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QStringList RimWellLogRftCurve::supportedCurveNameVariables() const
{
return { RiaDefines::namingVariableWell(),
RiaDefines::namingVariableResultName(),
RiaDefines::namingVariableResultType(),
RiaDefines::namingVariableCase(),
RiaDefines::namingVariableWellBranch(),
RiaDefines::namingVariableTime() };
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::onLoadDataAndUpdate( bool updateParentPlot )
{
if ( m_curveColorByPhase && m_rftDataType() == RimWellLogRftCurve::RftDataType::RFT_SEGMENT_DATA )
{
assignColorFromResultName( m_segmentResultName );
}
RimPlotCurve::updateCurvePresentation( updateParentPlot );
QString axisPrefixText;
if ( m_autoCheckStateBasedOnCurveData() || isChecked() )
{
auto wellLogPlot = firstAncestorOrThisOfTypeAsserted<RimDepthTrackPlot>();
auto* rftPlot = dynamic_cast<RimWellRftPlot*>( wellLogPlot );
bool showErrorBarsInObservedData = rftPlot ? rftPlot->showErrorBarsForObservedData() : false;
m_showErrorBars = showErrorBarsInObservedData;
std::vector<double> measuredDepthVector = measuredDepthValues( axisPrefixText );
std::vector<double> tvDepthVector = tvDepthValues();
std::vector<double> values = xValues();
std::vector<double> errors = errorValues();
std::vector<QString> perPointLabels;
auto anyValidValuesPresent = []( const std::vector<double>& values ) -> bool
{
for ( const auto& v : values )
{
if ( RiaStatisticsTools::isValidNumber<double>( v ) ) return true;
}
return false;
};
if ( !anyValidValuesPresent( values ) || ( values.size() != tvDepthVector.size() ) )
{
clearCurveData();
detach( true );
return;
}
RiaDefines::EclipseUnitSystem unitSystem = RiaDefines::EclipseUnitSystem::UNITS_METRIC;
if ( m_eclipseCase )
{
// TODO: If no grid data, but only RFT data is loaded, we do not have any way to
// detect unit
if ( m_eclipseCase->eclipseCaseData() )
{
unitSystem = m_eclipseCase->eclipseCaseData()->unitsType();
}
}
else if ( m_summaryCase )
{
unitSystem = m_summaryCase->unitsSystem();
}
else if ( m_ensemble )
{
unitSystem = m_ensemble->unitSystem();
}
else if ( m_observedFmuRftData )
{
// TODO: Read unit system somewhere for FMU RFT Data
unitSystem = RiaDefines::EclipseUnitSystem::UNITS_METRIC;
perPointLabels = this->perPointLabels();
}
else if ( m_pressureDepthData )
{
// TODO: Read unit system for pressure data
unitSystem = RiaDefines::EclipseUnitSystem::UNITS_METRIC;
// perPointLabels = this->perPointLabels();
}
else
{
CVF_ASSERT( false && "Need to have either an eclipse result case, a summary case or an ensemble" );
}
if ( tvDepthVector.size() != measuredDepthVector.size() )
{
if ( deriveMeasuredDepthFromObservedData( tvDepthVector, measuredDepthVector ) )
{
axisPrefixText = "OBS/";
}
}
if ( tvDepthVector.size() != measuredDepthVector.size() )
{
measuredDepthVector = tvDepthVector;
}
RimProject* proj = RimProject::current();
RimWellPath* wellPath = proj->wellPathByName( m_wellName );
double rkbDiff = 0.0;
if ( wellPath && wellPath->wellPathGeometry() )
{
rkbDiff = wellPath->wellPathGeometry()->rkbDiff();
}
bool useLogarithmicScale = false;
setPropertyValuesWithMdAndTVD( values,
measuredDepthVector,
tvDepthVector,
rkbDiff,
RiaDefines::fromEclipseUnit( unitSystem ),
false,
useLogarithmicScale );
RiaDefines::DepthUnitType displayUnit = RiaDefines::DepthUnitType::UNIT_METER;
if ( wellLogPlot )
{
displayUnit = wellLogPlot->depthUnit();
}
if ( m_plotCurve )
{
if ( wellLogPlot->depthType() == RiaDefines::DepthTypeEnum::MEASURED_DEPTH )
{
m_plotCurve->setPerPointLabels( perPointLabels );
auto propertyValues = curveData()->propertyValuesByIntervals();
auto depthValues = curveData()->depthValuesByIntervals( RiaDefines::DepthTypeEnum::MEASURED_DEPTH, displayUnit );
if ( !errors.empty() )
{
setPropertyAndDepthsAndErrors( propertyValues, depthValues, errors );
}
else
{
setPropertyAndDepthValuesToPlotCurve( propertyValues, depthValues );
}
m_plotCurve->setLineSegmentStartStopIndices( curveData()->polylineStartStopIndices() );
auto wellLogTrack = firstAncestorOrThisOfTypeAsserted<RimWellLogTrack>();
RiuQwtPlotWidget* viewer = wellLogTrack->viewer();
if ( viewer )
{
QString text = axisPrefixText + wellLogPlot->depthAxisTitle();
viewer->setAxisTitleText( wellLogPlot->depthAxis(), text );
}
}
else
{
m_plotCurve->setPerPointLabels( perPointLabels );
auto propertyValues = curveData()->propertyValuesByIntervals();
auto depthValues = curveData()->depthValuesByIntervals( RiaDefines::DepthTypeEnum::TRUE_VERTICAL_DEPTH, displayUnit );
bool useLogarithmicScale = false;
if ( !errors.empty() )
{
setPropertyAndDepthsAndErrors( propertyValues, depthValues, errors );
}
else
{
if ( isVerticalCurve() )
{
m_plotCurve->setSamplesFromXValuesAndYValues( propertyValues, depthValues, useLogarithmicScale );
}
else
{
m_plotCurve->setSamplesFromXValuesAndYValues( depthValues, propertyValues, useLogarithmicScale );
}
}
}
m_plotCurve->setLineSegmentStartStopIndices( curveData()->polylineStartStopIndices() );
}
if ( updateParentPlot )
{
updateZoomInParentPlot();
}
if ( m_parentPlot )
{
m_parentPlot->replot();
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::defineUiOrdering( QString uiConfigName, caf::PdmUiOrdering& uiOrdering )
{
RimPlotCurve::updateFieldUiState();
caf::PdmUiGroup* curveDataGroup = uiOrdering.addNewGroup( "Curve Data" );
curveDataGroup->add( &m_eclipseCase );
curveDataGroup->add( &m_summaryCase );
curveDataGroup->add( &m_wellName );
curveDataGroup->add( &m_timeStep );
curveDataGroup->add( &m_rftDataType );
curveDataGroup->add( &m_scaleFactor );
caf::PdmUiGroup* automationGroup = uiOrdering.addNewGroup( "Automation" );
automationGroup->setCollapsedByDefault();
automationGroup->add( &m_autoCheckStateBasedOnCurveData );
if ( m_rftDataType() == RimWellLogRftCurve::RftDataType::RFT_DATA )
{
curveDataGroup->add( &m_wellLogChannelName );
RiaSimWellBranchTools::appendSimWellBranchFieldsIfRequiredFromWellName( curveDataGroup, m_wellName, m_branchDetection, m_branchIndex );
}
else
{
curveDataGroup->add( &m_segmentResultName );
curveDataGroup->add( &m_segmentBranchType );
curveDataGroup->add( &m_segmentBranchIndex );
curveDataGroup->add( &m_curveColorByPhase );
}
RimStackablePlotCurve::defaultUiOrdering( uiOrdering );
uiOrdering.skipRemainingFields();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QList<caf::PdmOptionItemInfo> RimWellLogRftCurve::calculateValueOptions( const caf::PdmFieldHandle* fieldNeedingOptions )
{
QList<caf::PdmOptionItemInfo> options;
options = RimWellLogCurve::calculateValueOptions( fieldNeedingOptions );
if ( !options.empty() ) return options;
RifReaderRftInterface* reader = rftReader();
if ( fieldNeedingOptions == &m_eclipseCase )
{
RimTools::caseOptionItems( &options );
options.push_front( caf::PdmOptionItemInfo( "None", nullptr ) );
}
else if ( fieldNeedingOptions == &m_summaryCase )
{
options = RiaSummaryTools::optionsForSummaryCases( RimProject::current()->allSummaryCases() );
options.push_front( caf::PdmOptionItemInfo( "None", nullptr ) );
}
else if ( fieldNeedingOptions == &m_wellName )
{
options = RimRftTools::wellNameOptions( reader );
}
else if ( fieldNeedingOptions == &m_wellLogChannelName )
{
options = RimRftTools::wellLogChannelsOptions( reader, m_wellName() );
}
else if ( fieldNeedingOptions == &m_timeStep )
{
if ( m_rftDataType == RimWellLogRftCurve::RftDataType::RFT_SEGMENT_DATA )
options = RimRftTools::segmentTimeStepOptions( reader, m_wellName );
else
options = RimRftTools::timeStepOptions( reader, m_wellName, m_wellLogChannelName() );
}
else if ( fieldNeedingOptions == &m_branchIndex )
{
auto simulationWellBranches =
RiaSimWellBranchTools::simulationWellBranches( RimWellPlotTools::simWellName( m_wellName ), m_branchDetection );
options = RiaSimWellBranchTools::valueOptionsForBranchIndexField( simulationWellBranches );
}
else if ( fieldNeedingOptions == &m_segmentResultName )
{
options = RimRftTools::segmentResultNameOptions( reader, m_wellName(), m_timeStep() );
}
else if ( fieldNeedingOptions == &m_segmentBranchIndex )
{
options = RimRftTools::segmentBranchIndexOptions( reader, m_wellName(), m_timeStep(), m_segmentBranchType() );
}
else if ( fieldNeedingOptions == &m_scaleFactor )
{
for ( int exp = -12; exp <= 12; exp += 3 )
{
QString uiText = exp == 0 ? "1" : QString( "10 ^ %1" ).arg( exp );
double value = std::pow( 10, exp );
options.push_back( caf::PdmOptionItemInfo( uiText, value ) );
}
}
return options;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimWellLogRftCurve::fieldChangedByUi( const caf::PdmFieldHandle* changedField, const QVariant& oldValue, const QVariant& newValue )
{
bool loadData = false;
RimWellLogCurve::fieldChangedByUi( changedField, oldValue, newValue );
if ( changedField == &m_eclipseCase )
{
m_timeStep = QDateTime();
m_wellName = "";
m_wellLogChannelName = RifEclipseRftAddress::RftWellLogChannelType::NONE;
loadData = true;
}
else if ( changedField == &m_wellName )
{
m_branchIndex = 0;
updateWellChannelNameAndTimeStep();
loadData = true;
}
else if ( changedField == &m_branchDetection || changedField == &m_branchIndex )
{
QString simWellName = RimWellPlotTools::simWellName( m_wellName );
m_branchIndex = RiaSimWellBranchTools::clampBranchIndex( simWellName, m_branchIndex, m_branchDetection );
updateWellChannelNameAndTimeStep();
loadData = true;
}
else if ( changedField == &m_wellLogChannelName )
{
if ( m_wellLogChannelName == RifEclipseRftAddress::RftWellLogChannelType::NONE )
{
m_timeStep = QDateTime();
}
loadData = true;
}
else if ( changedField == &m_timeStep || changedField == &m_segmentResultName || changedField == &m_segmentBranchIndex ||
changedField == &m_rftDataType || changedField == &m_segmentBranchType || m_scaleFactor )
{
loadData = true;
}
if ( changedField == &m_rftDataType )
{
if ( m_rftDataType() == RftDataType::RFT_SEGMENT_DATA )
{
auto fileSummaryCase = dynamic_cast<RimFileSummaryCase*>( m_summaryCase() );
if ( fileSummaryCase ) fileSummaryCase->searchForWseglinkAndRecreateRftReader();
}
}
if ( loadData ) loadDataAndUpdate( true );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<QString> RimWellLogRftCurve::perPointLabels() const
{
if ( m_observedFmuRftData() )
{
auto address = RifEclipseRftAddress::createAddress( m_wellName(), m_timeStep, RifEclipseRftAddress::RftWellLogChannelType::PRESSURE );
return m_observedFmuRftData()->labels( address );
}
return {};
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RifReaderRftInterface* RimWellLogRftCurve::rftReader() const
{
if ( m_summaryCase() ) // Summary RFT curves have both summary and ensemble set. Prioritize summary for reader.
{
return m_summaryCase()->rftReader();
}
if ( m_ensemble() )
{
auto wellLogPlot = firstAncestorOrThisOfType<RimWellRftPlot>();
auto curveSet = wellLogPlot->findEnsembleCurveSet( m_ensemble );
if ( curveSet )
{
return curveSet->statisticsEclipseRftReader();
}
return nullptr;
}
if ( m_observedFmuRftData() )
{
return m_observedFmuRftData()->rftReader();
}
if ( m_pressureDepthData() )
{
return m_pressureDepthData()->rftReader();
}
if ( auto resultCase = dynamic_cast<RimEclipseResultCase*>( m_eclipseCase() ) )
{
return resultCase->rftReader();
}
return nullptr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigEclipseWellLogExtractor* RimWellLogRftCurve::extractor()
{
RimProject* proj = RimProject::current();
RimWellPath* wellPath = proj->wellPathFromSimWellName( m_wellName() );
// The well path extractor has the best geometrical representation, so use this if found
if ( auto wellPathExtractor = RiaExtractionTools::findOrCreateWellLogExtractor( wellPath, m_eclipseCase ) )
{
return wellPathExtractor;
}
// Use sim well extractor as fallback
QString simWellName = RimWellPlotTools::simWellName( m_wellName );
return RiaExtractionTools::findOrCreateSimWellExtractor( m_eclipseCase(), simWellName, m_branchDetection(), m_branchIndex() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimWellLogRftCurve::xValues()
{
RifReaderRftInterface* reader = rftReader();
if ( !reader ) return {};
std::vector<double> values;
if ( m_rftDataType() == RftDataType::RFT_SEGMENT_DATA )
{
auto depthAddress = RifEclipseRftAddress::createBranchSegmentAddress( m_wellName(),
m_timeStep,
m_segmentResultName(),
segmentBranchIndex(),
m_segmentBranchType() );
reader->values( depthAddress, &values );
}
else
{
auto address = RifEclipseRftAddress::createAddress( m_wellName(), m_timeStep, m_wellLogChannelName() );
reader->values( address, &values );
}
if ( m_scaleFactor() != 1.0 )
{
for ( auto& val : values )
{
val *= m_scaleFactor();
}
}
return values;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimWellLogRftCurve::errorValues()
{
RifReaderRftInterface* reader = rftReader();
std::vector<double> errorValues;
if ( reader && m_rftDataType() == RftDataType::RFT_DATA )
{
RifEclipseRftAddress errorAddress =
RifEclipseRftAddress::createAddress( m_wellName(), m_timeStep, RifEclipseRftAddress::RftWellLogChannelType::PRESSURE_ERROR );
reader->values( errorAddress, &errorValues );
}
return errorValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimWellLogRftCurve::tvDepthValues()
{
RifReaderRftInterface* reader = rftReader();
std::vector<double> values;
if ( !reader ) return values;
RifEclipseRftAddress depthAddress =
RifEclipseRftAddress::createAddress( m_wellName(), m_timeStep, RifEclipseRftAddress::RftWellLogChannelType::TVD );
if ( m_rftDataType() == RftDataType::RFT_SEGMENT_DATA )
{
depthAddress = RifEclipseRftAddress::createBranchSegmentAddress( m_wellName(),
m_timeStep,
RiaDefines::segmentTvdDepthResultName(),
segmentBranchIndex(),
m_segmentBranchType() );
}
reader->values( depthAddress, &values );
return values;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimWellLogRftCurve::measuredDepthValues( QString& prefixText )
{
if ( m_rftDataType() == RftDataType::RFT_SEGMENT_DATA )
{
RifReaderRftInterface* reader = rftReader();
if ( reader )
{
prefixText = "SEGMENT/";
return RimRftTools::seglenstValues( reader, m_wellName(), m_timeStep, segmentBranchIndex(), m_segmentBranchType() );
}
return {};
}
if ( m_observedFmuRftData && !m_ensemble && !m_summaryCase )
{
RifReaderRftInterface* reader = rftReader();
std::vector<double> values;
if ( !reader ) return values;
RifEclipseRftAddress depthAddress =
RifEclipseRftAddress::createAddress( m_wellName(), m_timeStep, RifEclipseRftAddress::RftWellLogChannelType::MD );
reader->values( depthAddress, &values );
prefixText = "OBS/";
return values;
}
if ( m_pressureDepthData && !m_ensemble && !m_summaryCase )
{
// Pressure depth data does not have MD
return {};
}
RigEclipseWellLogExtractor* eclExtractor = extractor();
if ( !eclExtractor ) return {};
if ( auto reader = rftReader() )
{
prefixText = "WELL/";
RifEclipseRftAddress depthAddress =
RifEclipseRftAddress::createAddress( m_wellName(), m_timeStep, RifEclipseRftAddress::RftWellLogChannelType::MD );
std::vector<double> values;
reader->values( depthAddress, &values );
if ( !values.empty() ) return values;
return rftReader()->computeMeasuredDepth( m_wellName(), m_timeStep(), eclExtractor );
};
return {};
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimWellLogRftCurve::deriveMeasuredDepthFromObservedData( const std::vector<double>& tvDepthValues, std::vector<double>& derivedMDValues )
{
if ( m_observedFmuRftData )
{
RifReaderRftInterface* reader = m_observedFmuRftData->rftReader();
if ( reader )
{
std::vector<double> tvdValuesOfObservedData;
std::vector<double> mdValuesOfObservedData;
RifEclipseRftAddress tvdAddress =
RifEclipseRftAddress::createAddress( m_wellName(), m_timeStep, RifEclipseRftAddress::RftWellLogChannelType::TVD );
RifEclipseRftAddress mdAddress =
RifEclipseRftAddress::createAddress( m_wellName(), m_timeStep, RifEclipseRftAddress::RftWellLogChannelType::MD );
reader->values( tvdAddress, &tvdValuesOfObservedData );
reader->values( mdAddress, &mdValuesOfObservedData );
// We are not able to estimate MD/TVD relationship for less than two samples
if ( tvdValuesOfObservedData.size() < 2 ) return false;
derivedMDValues = RigWellPathGeometryTools::interpolateMdFromTvd( mdValuesOfObservedData, tvdValuesOfObservedData, tvDepthValues );
CVF_ASSERT( derivedMDValues.size() == tvDepthValues.size() );
return true;
}
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
int RimWellLogRftCurve::segmentBranchIndex() const
{
return m_segmentBranchIndex();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimWellLogRftCurve::isSegmentResult( const QString& resultName )
{
return resultName.startsWith( "SEG" );
}