ResInsight/ApplicationCode/ProjectDataModel/RimReservoirCellResultsStorage.cpp
2015-05-27 06:23:08 -07:00

1546 lines
58 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimReservoirCellResultsStorage.h"
#include "RigActiveCellInfo.h"
#include "RigCaseCellResultsData.h"
#include "RigCaseData.h"
#include "RigCell.h"
#include "RigMainGrid.h"
#include "RimEclipseCase.h"
#include "RimTools.h"
#include "cafProgressInfo.h"
#include "cvfGeometryTools.h"
#include <QDebug>
#include <QDir>
#include <QFile>
#include <QFileInfo>
#include <QUuid>
CAF_PDM_SOURCE_INIT(RimReservoirCellResultsStorage, "ReservoirCellResultStorage");
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimReservoirCellResultsStorage::RimReservoirCellResultsStorage()
: m_cellResults(NULL),
m_ownerMainGrid(NULL)
{
CAF_PDM_InitObject("Cacher", "", "", "");
CAF_PDM_InitField(&m_resultCacheFileName, "ResultCacheFileName", QString(), "UiDummyname", "", "" ,"");
m_resultCacheFileName.setUiHidden(true);
CAF_PDM_InitFieldNoDefault(&m_resultCacheMetaData, "ResultCacheEntries", "UiDummyname", "", "", "");
m_resultCacheMetaData.setUiHidden(true);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimReservoirCellResultsStorage::~RimReservoirCellResultsStorage()
{
m_resultCacheMetaData.deleteAllChildObjects();
}
//--------------------------------------------------------------------------------------------------
/// This override populates the metainfo regarding the cell results data in the RigCaseCellResultsData
/// object. This metainfo will then be written to the project file when saving, and thus read on project file open.
/// This method then writes the actual double arrays to the data file in a simple format:
/// MagicNumber<uint32>, Version<uint32>, ResultVariables< Array < TimeStep< CellDataArraySize<uint64>, CellData< Array<double > > > >
///
//--------------------------------------------------------------------------------------------------
void RimReservoirCellResultsStorage::setupBeforeSave()
{
m_resultCacheMetaData.deleteAllChildObjects();
QString newValidCacheFileName = getValidCacheFileName();
// Delete the storage file
QFileInfo storageFileInfo(newValidCacheFileName);
if (storageFileInfo.exists())
{
QDir storageDir = storageFileInfo.dir();
storageDir.remove(storageFileInfo.fileName());
}
if (!m_cellResults) return;
const std::vector<RigCaseCellResultsData::ResultInfo>& resInfo = m_cellResults->infoForEachResultIndex();
bool hasResultsToStore = false;
for (size_t rIdx = 0; rIdx < resInfo.size(); ++rIdx)
{
if (resInfo[rIdx].m_needsToBeStored)
{
hasResultsToStore = true;
break;
}
}
if(resInfo.size() && hasResultsToStore)
{
QDir::root().mkpath(getCacheDirectoryPath());
QFile cacheFile(newValidCacheFileName);
if (!cacheFile.open(QIODevice::WriteOnly))
{
qWarning() << "Saving project: Can't open the cache file : " + newValidCacheFileName;
return;
}
m_resultCacheFileName = newValidCacheFileName;
QDataStream stream(&cacheFile);
stream.setVersion(QDataStream::Qt_4_6);
stream << (quint32)0xCEECAC4E; // magic number
stream << (quint32)1; // Version number. Increment if needing to extend the format in ways that can not be handled generically by the reader
caf::ProgressInfo progInfo(resInfo.size(), "Saving generated and imported properties");
for (size_t rIdx = 0; rIdx < resInfo.size(); ++rIdx)
{
// If there is no data, we do not store anything for the current result variable
// (Even not the metadata, of cause)
size_t timestepCount = m_cellResults->cellScalarResults(resInfo[rIdx].m_gridScalarResultIndex).size();
if (timestepCount && resInfo[rIdx].m_needsToBeStored)
{
progInfo.setProgressDescription(resInfo[rIdx].m_resultName);
// Create and setup the cache information for this result
RimReservoirCellResultsStorageEntryInfo* cacheEntry = new RimReservoirCellResultsStorageEntryInfo;
m_resultCacheMetaData.push_back(cacheEntry);
cacheEntry->m_resultType = resInfo[rIdx].m_resultType;
cacheEntry->m_resultName = resInfo[rIdx].m_resultName;
cacheEntry->m_timeStepDates = resInfo[rIdx].m_timeStepDates;
// Take note of the file position for fast lookup later
cacheEntry->m_filePosition = cacheFile.pos();
// Write all the scalar values for each time step to the stream,
// starting with the number of values
for (size_t tsIdx = 0; tsIdx < resInfo[rIdx].m_timeStepDates.size() ; ++tsIdx)
{
const std::vector<double>* data = NULL;
if (tsIdx < timestepCount)
{
data = &(m_cellResults->cellScalarResults(resInfo[rIdx].m_gridScalarResultIndex, tsIdx));
}
if (data && data->size())
{
stream << (quint64)(data->size());
for (size_t cIdx = 0; cIdx < data->size(); ++cIdx)
{
stream << (*data)[cIdx];
}
}
else
{
stream << (quint64)0;
}
}
}
progInfo.incrementProgress();
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimReservoirCellResultsStorage::getValidCacheFileName()
{
QString cacheFileName;
if (m_resultCacheFileName().isEmpty())
{
QString newCacheDirPath = getCacheDirectoryPath();
QUuid guid = QUuid::createUuid();
cacheFileName = newCacheDirPath + "/" + guid.toString();
}
else
{
// Make the path correct related to the possibly new project filename
QString newCacheDirPath = getCacheDirectoryPath();
QFileInfo oldCacheFile(m_resultCacheFileName());
cacheFileName = newCacheDirPath + "/" + oldCacheFile.fileName();
}
return cacheFileName;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimReservoirCellResultsStorage::getCacheDirectoryPath()
{
QString cacheDirPath = RimTools::getCacheRootDirectoryPathFromProject();
cacheDirPath += "_cache";
return cacheDirPath;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimReservoirCellResultsStorage::setReaderInterface(RifReaderInterface* readerInterface)
{
m_readerInterface = readerInterface;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RifReaderInterface* RimReservoirCellResultsStorage::readerInterface()
{
return m_readerInterface.p();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RimReservoirCellResultsStorage::findOrLoadScalarResult(const QString& resultName)
{
if (!m_cellResults) return cvf::UNDEFINED_SIZE_T;
size_t scalarResultIndex = cvf::UNDEFINED_SIZE_T;
scalarResultIndex = this->findOrLoadScalarResult(RimDefines::STATIC_NATIVE, resultName);
if (scalarResultIndex == cvf::UNDEFINED_SIZE_T)
{
scalarResultIndex = this->findOrLoadScalarResult(RimDefines::DYNAMIC_NATIVE, resultName);
}
if (scalarResultIndex == cvf::UNDEFINED_SIZE_T)
{
scalarResultIndex = m_cellResults->findScalarResultIndex(RimDefines::GENERATED, resultName);
}
if (scalarResultIndex == cvf::UNDEFINED_SIZE_T)
{
scalarResultIndex = m_cellResults->findScalarResultIndex(RimDefines::INPUT_PROPERTY, resultName);
}
return scalarResultIndex;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RimReservoirCellResultsStorage::findOrLoadScalarResult(RimDefines::ResultCatType type, const QString& resultName)
{
if (!m_cellResults) return cvf::UNDEFINED_SIZE_T;
size_t scalarResultIndex = m_cellResults->findScalarResultIndex(type, resultName);
if (scalarResultIndex == cvf::UNDEFINED_SIZE_T) return cvf::UNDEFINED_SIZE_T;
// Load dependency data sets
if (type == RimDefines::STATIC_NATIVE)
{
if (resultName == RimDefines::combinedTransmissibilityResultName())
{
this->findOrLoadScalarResult(type, "TRANX");
this->findOrLoadScalarResult(type, "TRANY");
this->findOrLoadScalarResult(type, "TRANZ");
}
else if (resultName == RimDefines::combinedMultResultName())
{
this->findOrLoadScalarResult(type, "MULTX");
this->findOrLoadScalarResult(type, "MULTX-");
this->findOrLoadScalarResult(type, "MULTY");
this->findOrLoadScalarResult(type, "MULTY-");
this->findOrLoadScalarResult(type, "MULTZ");
this->findOrLoadScalarResult(type, "MULTZ-");
}
else if (resultName == RimDefines::combinedRiTranResultName())
{
computeRiTransComponent(RimDefines::riTranXResultName());
computeRiTransComponent(RimDefines::riTranYResultName());
computeRiTransComponent(RimDefines::riTranZResultName());
computeNncCombRiTrans();
}
else if (resultName == RimDefines::riTranXResultName()
|| resultName == RimDefines::riTranYResultName()
|| resultName == RimDefines::riTranZResultName())
{
computeRiTransComponent(resultName);
}
else if (resultName == RimDefines::combinedRiMultResultName())
{
computeRiMULTComponent(RimDefines::riMultXResultName());
computeRiMULTComponent(RimDefines::riMultYResultName());
computeRiMULTComponent(RimDefines::riMultZResultName());
computeNncCombRiTrans();
computeNncCombRiMULT();
}
else if (resultName == RimDefines::riMultXResultName()
|| resultName == RimDefines::riMultYResultName()
|| resultName == RimDefines::riMultZResultName())
{
computeRiMULTComponent(resultName);
}
else if (resultName == RimDefines::combinedRiAreaNormTranResultName())
{
computeRiTRANSbyAreaComponent(RimDefines::riAreaNormTranXResultName());
computeRiTRANSbyAreaComponent(RimDefines::riAreaNormTranYResultName());
computeRiTRANSbyAreaComponent(RimDefines::riAreaNormTranZResultName());
computeNncCombRiTRANSbyArea();
}
else if (resultName == RimDefines::riAreaNormTranXResultName()
|| resultName == RimDefines::riAreaNormTranYResultName()
|| resultName == RimDefines::riAreaNormTranZResultName())
{
computeRiTRANSbyAreaComponent(resultName);
}
}
if (isDataPresent(scalarResultIndex))
{
return scalarResultIndex;
}
if (resultName == "SOIL")
{
if (m_cellResults->mustBeCalculated(scalarResultIndex))
{
// Trigger loading of SWAT, SGAS to establish time step count if no data has been loaded from file at this point
findOrLoadScalarResult(RimDefines::DYNAMIC_NATIVE, "SWAT");
findOrLoadScalarResult(RimDefines::DYNAMIC_NATIVE, "SGAS");
m_cellResults->cellScalarResults(scalarResultIndex).resize(m_cellResults->maxTimeStepCount());
for (size_t timeStepIdx = 0; timeStepIdx < m_cellResults->maxTimeStepCount(); timeStepIdx++)
{
std::vector<double>& values = m_cellResults->cellScalarResults(scalarResultIndex)[timeStepIdx];
if (values.size() == 0)
{
computeSOILForTimeStep(timeStepIdx);
}
}
return scalarResultIndex;
}
}
if (type == RimDefines::GENERATED)
{
return cvf::UNDEFINED_SIZE_T;
}
if (m_readerInterface.notNull())
{
// Add one more result to result container
size_t timeStepCount = m_cellResults->infoForEachResultIndex()[scalarResultIndex].m_timeStepDates.size();
bool resultLoadingSucess = true;
if (type == RimDefines::DYNAMIC_NATIVE && timeStepCount > 0)
{
m_cellResults->cellScalarResults(scalarResultIndex).resize(timeStepCount);
size_t i;
for (i = 0; i < timeStepCount; i++)
{
std::vector<double>& values = m_cellResults->cellScalarResults(scalarResultIndex)[i];
if (!m_readerInterface->dynamicResult(resultName, RifReaderInterface::MATRIX_RESULTS, i, &values))
{
resultLoadingSucess = false;
}
}
}
else if (type == RimDefines::STATIC_NATIVE)
{
m_cellResults->cellScalarResults(scalarResultIndex).resize(1);
std::vector<double>& values = m_cellResults->cellScalarResults(scalarResultIndex)[0];
if (!m_readerInterface->staticResult(resultName, RifReaderInterface::MATRIX_RESULTS, &values))
{
resultLoadingSucess = false;
}
}
if (!resultLoadingSucess)
{
// Remove last scalar result because loading of result failed
m_cellResults->cellScalarResults(scalarResultIndex).clear();
}
}
return scalarResultIndex;
}
//--------------------------------------------------------------------------------------------------
/// This method is intended to be used for multicase cross statistical calculations, when
/// we need process one timestep at a time, freeing memory as we go.
//--------------------------------------------------------------------------------------------------
size_t RimReservoirCellResultsStorage::findOrLoadScalarResultForTimeStep(RimDefines::ResultCatType type, const QString& resultName, size_t timeStepIndex)
{
if (!m_cellResults) return cvf::UNDEFINED_SIZE_T;
// Special handling for SOIL
if (type == RimDefines::DYNAMIC_NATIVE && resultName.toUpper() == "SOIL")
{
size_t soilScalarResultIndex = m_cellResults->findScalarResultIndex(type, resultName);
if (m_cellResults->mustBeCalculated(soilScalarResultIndex))
{
std::vector<double>& values = m_cellResults->cellScalarResults(soilScalarResultIndex)[timeStepIndex];
if (values.size() == 0)
{
computeSOILForTimeStep(timeStepIndex);
}
return soilScalarResultIndex;
}
}
size_t scalarResultIndex = m_cellResults->findScalarResultIndex(type, resultName);
if (scalarResultIndex == cvf::UNDEFINED_SIZE_T) return cvf::UNDEFINED_SIZE_T;
if (type == RimDefines::GENERATED)
{
return cvf::UNDEFINED_SIZE_T;
}
if (m_readerInterface.notNull())
{
size_t timeStepCount = m_cellResults->infoForEachResultIndex()[scalarResultIndex].m_timeStepDates.size();
bool resultLoadingSucess = true;
if (type == RimDefines::DYNAMIC_NATIVE && timeStepCount > 0)
{
m_cellResults->cellScalarResults(scalarResultIndex).resize(timeStepCount);
std::vector<double>& values = m_cellResults->cellScalarResults(scalarResultIndex)[timeStepIndex];
if (values.size() == 0)
{
if (!m_readerInterface->dynamicResult(resultName, RifReaderInterface::MATRIX_RESULTS, timeStepIndex, &values))
{
resultLoadingSucess = false;
}
}
}
else if (type == RimDefines::STATIC_NATIVE)
{
m_cellResults->cellScalarResults(scalarResultIndex).resize(1);
std::vector<double>& values = m_cellResults->cellScalarResults(scalarResultIndex)[0];
if (!m_readerInterface->staticResult(resultName, RifReaderInterface::MATRIX_RESULTS, &values))
{
resultLoadingSucess = false;
}
}
if (!resultLoadingSucess)
{
// Error logging
CVF_ASSERT(false);
}
}
return scalarResultIndex;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimReservoirCellResultsStorage::computeSOILForTimeStep(size_t timeStepIndex)
{
size_t scalarIndexSWAT = findOrLoadScalarResultForTimeStep(RimDefines::DYNAMIC_NATIVE, "SWAT", timeStepIndex);
size_t scalarIndexSGAS = findOrLoadScalarResultForTimeStep(RimDefines::DYNAMIC_NATIVE, "SGAS", timeStepIndex);
// Early exit if none of SWAT or SGAS is present
if (scalarIndexSWAT == cvf::UNDEFINED_SIZE_T && scalarIndexSGAS == cvf::UNDEFINED_SIZE_T)
{
return;
}
CVF_ASSERT(m_cellResults);
size_t soilResultValueCount = 0;
size_t soilTimeStepCount = 0;
if (scalarIndexSWAT != cvf::UNDEFINED_SIZE_T)
{
std::vector<double>& swatForTimeStep = m_cellResults->cellScalarResults(scalarIndexSWAT, timeStepIndex);
if (swatForTimeStep.size() > 0)
{
soilResultValueCount = swatForTimeStep.size();
soilTimeStepCount = m_cellResults->infoForEachResultIndex()[scalarIndexSWAT].m_timeStepDates.size();
}
}
if (scalarIndexSGAS != cvf::UNDEFINED_SIZE_T)
{
std::vector<double>& sgasForTimeStep = m_cellResults->cellScalarResults(scalarIndexSGAS, timeStepIndex);
if (sgasForTimeStep.size() > 0)
{
soilResultValueCount = qMax(soilResultValueCount, sgasForTimeStep.size());
size_t sgasTimeStepCount = m_cellResults->infoForEachResultIndex()[scalarIndexSGAS].m_timeStepDates.size();
soilTimeStepCount = qMax(soilTimeStepCount, sgasTimeStepCount);
}
}
// Make sure memory is allocated for the new SOIL results
size_t soilResultScalarIndex = m_cellResults->findScalarResultIndex(RimDefines::DYNAMIC_NATIVE, "SOIL");
m_cellResults->cellScalarResults(soilResultScalarIndex).resize(soilTimeStepCount);
if (m_cellResults->cellScalarResults(soilResultScalarIndex, timeStepIndex).size() > 0)
{
// Data is computed and allocated, nothing more to do
return;
}
m_cellResults->cellScalarResults(soilResultScalarIndex, timeStepIndex).resize(soilResultValueCount);
std::vector<double>* swatForTimeStep = NULL;
std::vector<double>* sgasForTimeStep = NULL;
if (scalarIndexSWAT != cvf::UNDEFINED_SIZE_T)
{
swatForTimeStep = &(m_cellResults->cellScalarResults(scalarIndexSWAT, timeStepIndex));
if (swatForTimeStep->size() == 0)
{
swatForTimeStep = NULL;
}
}
if (scalarIndexSGAS != cvf::UNDEFINED_SIZE_T)
{
sgasForTimeStep = &(m_cellResults->cellScalarResults(scalarIndexSGAS, timeStepIndex));
if (sgasForTimeStep->size() == 0)
{
sgasForTimeStep = NULL;
}
}
std::vector<double>& soilForTimeStep = m_cellResults->cellScalarResults(soilResultScalarIndex, timeStepIndex);
#pragma omp parallel for
for (int idx = 0; idx < static_cast<int>(soilResultValueCount); idx++)
{
double soilValue = 1.0;
if (sgasForTimeStep)
{
soilValue -= sgasForTimeStep->at(idx);
}
if (swatForTimeStep)
{
soilValue -= swatForTimeStep->at(idx);
}
soilForTimeStep[idx] = soilValue;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimReservoirCellResultsStorage::computeDepthRelatedResults()
{
if (!m_cellResults) return;
size_t depthResultGridIndex = findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "DEPTH");
size_t dxResultGridIndex = findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "DX");
size_t dyResultGridIndex = findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "DY");
size_t dzResultGridIndex = findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "DZ");
size_t topsResultGridIndex = findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "TOPS");
size_t bottomResultGridIndex = findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "BOTTOM");
bool computeDepth = false;
bool computeDx = false;
bool computeDy = false;
bool computeDz = false;
bool computeTops = false;
bool computeBottom = false;
size_t resultValueCount = m_ownerMainGrid->cells().size();
if (depthResultGridIndex == cvf::UNDEFINED_SIZE_T)
{
depthResultGridIndex = m_cellResults->addStaticScalarResult(RimDefines::STATIC_NATIVE, "DEPTH", false, resultValueCount);
computeDepth = true;
}
if (dxResultGridIndex == cvf::UNDEFINED_SIZE_T)
{
dxResultGridIndex = m_cellResults->addStaticScalarResult(RimDefines::STATIC_NATIVE, "DX", false, resultValueCount);
computeDx = true;
}
if (dyResultGridIndex == cvf::UNDEFINED_SIZE_T)
{
dyResultGridIndex = m_cellResults->addStaticScalarResult(RimDefines::STATIC_NATIVE, "DY", false, resultValueCount);
computeDy = true;
}
if (dzResultGridIndex == cvf::UNDEFINED_SIZE_T)
{
dzResultGridIndex = m_cellResults->addStaticScalarResult(RimDefines::STATIC_NATIVE, "DZ", false, resultValueCount);
computeDz = true;
}
if (topsResultGridIndex == cvf::UNDEFINED_SIZE_T)
{
topsResultGridIndex = m_cellResults->addStaticScalarResult(RimDefines::STATIC_NATIVE, "TOPS", false, resultValueCount);
computeTops = true;
}
if (bottomResultGridIndex == cvf::UNDEFINED_SIZE_T)
{
bottomResultGridIndex = m_cellResults->addStaticScalarResult(RimDefines::STATIC_NATIVE, "BOTTOM", false, resultValueCount);
computeBottom = true;
}
std::vector< std::vector<double> >& depth = m_cellResults->cellScalarResults(depthResultGridIndex);
std::vector< std::vector<double> >& dx = m_cellResults->cellScalarResults(dxResultGridIndex);
std::vector< std::vector<double> >& dy = m_cellResults->cellScalarResults(dyResultGridIndex);
std::vector< std::vector<double> >& dz = m_cellResults->cellScalarResults(dzResultGridIndex);
std::vector< std::vector<double> >& tops = m_cellResults->cellScalarResults(topsResultGridIndex);
std::vector< std::vector<double> >& bottom = m_cellResults->cellScalarResults(bottomResultGridIndex);
size_t cellIdx = 0;
for (cellIdx = 0; cellIdx < m_ownerMainGrid->cells().size(); cellIdx++)
{
const RigCell& cell = m_ownerMainGrid->cells()[cellIdx];
if (computeDepth)
{
depth[0][cellIdx] = cvf::Math::abs(cell.center().z());
}
if (computeDx)
{
cvf::Vec3d cellWidth = cell.faceCenter(cvf::StructGridInterface::NEG_I) - cell.faceCenter(cvf::StructGridInterface::POS_I);
dx[0][cellIdx] = cvf::Math::abs(cellWidth.x());
}
if (computeDy)
{
cvf::Vec3d cellWidth = cell.faceCenter(cvf::StructGridInterface::NEG_J) - cell.faceCenter(cvf::StructGridInterface::POS_J);
dy[0][cellIdx] = cvf::Math::abs(cellWidth.y());
}
if (computeDz)
{
cvf::Vec3d cellWidth = cell.faceCenter(cvf::StructGridInterface::NEG_K) - cell.faceCenter(cvf::StructGridInterface::POS_K);
dz[0][cellIdx] = cvf::Math::abs(cellWidth.z());
}
if (computeTops)
{
tops[0][cellIdx] = cvf::Math::abs(cell.faceCenter(cvf::StructGridInterface::NEG_K).z());
}
if (computeBottom)
{
bottom[0][cellIdx] = cvf::Math::abs(cell.faceCenter(cvf::StructGridInterface::POS_K).z());
}
}
}
namespace RigTransmissibilityCalcTools
{
void calculateConnectionGeometry(const RigCell& c1, const RigCell& c2, const std::vector<cvf::Vec3d>& nodes,
cvf::StructGridInterface::FaceType faceId, cvf::Vec3d* faceAreaVec)
{
CVF_TIGHT_ASSERT(faceAreaVec);
*faceAreaVec = cvf::Vec3d::ZERO;
std::vector<size_t> polygon;
std::vector<cvf::Vec3d> intersections;
caf::SizeTArray4 face1;
caf::SizeTArray4 face2;
c1.faceIndices(faceId, &face1);
c2.faceIndices(cvf::StructGridInterface::oppositeFace(faceId), &face2);
bool foundOverlap = cvf::GeometryTools::calculateOverlapPolygonOfTwoQuads(
&polygon,
&intersections,
(cvf::EdgeIntersectStorage<size_t>*)NULL,
cvf::wrapArrayConst(&nodes),
face1.data(),
face2.data(),
1e-6);
if (foundOverlap)
{
std::vector<cvf::Vec3d> realPolygon;
for (size_t pIdx = 0; pIdx < polygon.size(); ++pIdx)
{
if (polygon[pIdx] < nodes.size())
realPolygon.push_back(nodes[polygon[pIdx]]);
else
realPolygon.push_back(intersections[polygon[pIdx] - nodes.size()]);
}
// Polygon area vector
*faceAreaVec = cvf::GeometryTools::polygonAreaNormal3D(realPolygon);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double halfCellTransmissibility(double perm, double ntg, const cvf::Vec3d& centerToFace, const cvf::Vec3d& faceAreaVec)
{
return perm*ntg*(faceAreaVec*centerToFace) / (centerToFace*centerToFace);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double newtran(double cdarchy, double mult, double halfCellTrans, double neighborHalfCellTrans)
{
if (cvf::Math::abs(halfCellTrans) < 1e-15 || cvf::Math::abs(neighborHalfCellTrans) < 1e-15)
{
return 0.0;
}
double result = cdarchy * mult / ((1 / halfCellTrans) + (1 / neighborHalfCellTrans));
CVF_TIGHT_ASSERT(result == result);
return result;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
typedef size_t(*ResultIndexFunction)(const RigActiveCellInfo* activeCellinfo, size_t reservoirCellIndex);
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t directReservoirCellIndex(const RigActiveCellInfo* activeCellinfo, size_t reservoirCellIndex)
{
return reservoirCellIndex;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t reservoirActiveCellIndex(const RigActiveCellInfo* activeCellinfo, size_t reservoirCellIndex)
{
return activeCellinfo->cellResultIndex(reservoirCellIndex);
}
}
using namespace RigTransmissibilityCalcTools;
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimReservoirCellResultsStorage::computeRiTransComponent(const QString& riTransComponentResultName)
{
if (!m_cellResults) return;
// Set up which component to compute
cvf::StructGridInterface::FaceType faceId = cvf::StructGridInterface::NO_FACE;
QString permCompName;
if (riTransComponentResultName == RimDefines::riTranXResultName())
{
permCompName = "PERMX";
faceId = cvf::StructGridInterface::POS_I;
}
else if (riTransComponentResultName == RimDefines::riTranYResultName())
{
permCompName = "PERMY";
faceId = cvf::StructGridInterface::POS_J;
}
else if (riTransComponentResultName == RimDefines::riTranZResultName())
{
permCompName = "PERMZ";
faceId = cvf::StructGridInterface::POS_K;
}
else
{
CVF_ASSERT(false);
}
double cdarchy = darchysValue();
// Get the needed result indices we depend on
size_t permResultIdx = findOrLoadScalarResult(RimDefines::STATIC_NATIVE, permCompName);
size_t ntgResultIdx = findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "NTG");
// Get the result index of the output
size_t riTransResultIdx = m_cellResults->findScalarResultIndex(RimDefines::STATIC_NATIVE, riTransComponentResultName);
CVF_ASSERT(riTransResultIdx != cvf::UNDEFINED_SIZE_T);
// Get the result count, to handle that one of them might be globally defined
size_t permxResultValueCount = m_cellResults->cellScalarResults(permResultIdx)[0].size();
size_t ntgResultValueCount = m_cellResults->cellScalarResults(ntgResultIdx)[0].size();
size_t resultValueCount = CVF_MIN(permxResultValueCount, ntgResultValueCount);
// Get all the actual result values
std::vector<double> & permResults = m_cellResults->cellScalarResults(permResultIdx)[0];
std::vector<double> & ntgResults = m_cellResults->cellScalarResults(ntgResultIdx)[0];
std::vector<double> & riTransResults = m_cellResults->cellScalarResults(riTransResultIdx)[0];
// Set up output container to correct number of results
riTransResults.resize(resultValueCount);
// Prepare how to index the result values:
bool isPermUsingResIdx = m_cellResults->isUsingGlobalActiveIndex(permResultIdx);
bool isNtgUsingResIdx = m_cellResults->isUsingGlobalActiveIndex(ntgResultIdx);
bool isTransUsingResIdx = m_cellResults->isUsingGlobalActiveIndex(riTransResultIdx);
// Set up result index function pointers
ResultIndexFunction riTranIdxFunc = isTransUsingResIdx ? &reservoirActiveCellIndex : &directReservoirCellIndex;
ResultIndexFunction permIdxFunc = isPermUsingResIdx ? &reservoirActiveCellIndex : &directReservoirCellIndex;
ResultIndexFunction ntgIdxFunc = isNtgUsingResIdx ? &reservoirActiveCellIndex : &directReservoirCellIndex;
const RigActiveCellInfo* activeCellInfo = m_cellResults->activeCellInfo();
const std::vector<cvf::Vec3d>& nodes = m_ownerMainGrid->nodes();
bool isFaceNormalsOutwards = m_ownerMainGrid->isFaceNormalsOutwards();
for (size_t nativeResvCellIndex = 0; nativeResvCellIndex < m_ownerMainGrid->cells().size(); nativeResvCellIndex++)
{
// Do nothing if we are only dealing with active cells, and this cell is not active:
size_t tranResIdx = (*riTranIdxFunc)(activeCellInfo, nativeResvCellIndex);
if (tranResIdx == cvf::UNDEFINED_SIZE_T) continue;
const RigCell& nativeCell = m_ownerMainGrid->cells()[nativeResvCellIndex];
RigGridBase* grid = nativeCell.hostGrid();
size_t gridLocalNativeCellIndex = nativeCell.gridLocalCellIndex();
size_t i, j, k, gridLocalNeighborCellIdx;
grid->ijkFromCellIndex(gridLocalNativeCellIndex, &i, &j, &k);
if (grid->cellIJKNeighbor(i, j, k, faceId, &gridLocalNeighborCellIdx))
{
size_t neighborResvCellIdx = grid->reservoirCellIndex(gridLocalNeighborCellIdx);
const RigCell& neighborCell = m_ownerMainGrid->cells()[neighborResvCellIdx];
// Do nothing if neighbor cell has no results
size_t neighborCellPermResIdx = (*permIdxFunc)(activeCellInfo, neighborResvCellIdx);
if (neighborCellPermResIdx == cvf::UNDEFINED_SIZE_T) continue;
// Connection geometry
const RigFault* fault = grid->mainGrid()->findFaultFromCellIndexAndCellFace(nativeResvCellIndex, faceId);
bool isOnFault = fault;
cvf::Vec3d faceAreaVec;
cvf::Vec3d faceCenter;
if (isOnFault)
{
calculateConnectionGeometry(nativeCell, neighborCell, nodes, faceId, &faceAreaVec);
}
else
{
faceAreaVec = nativeCell.faceNormalWithAreaLenght(faceId);
}
if (!isFaceNormalsOutwards) faceAreaVec = -faceAreaVec;
double halfCellTrans = 0;
double neighborHalfCellTrans = 0;
// Native cell half cell transm
{
cvf::Vec3d centerToFace = nativeCell.faceCenter(faceId) - nativeCell.center();
size_t permResIdx = (*permIdxFunc)(activeCellInfo, nativeResvCellIndex);
double perm = permResults[permResIdx];
double ntg = 1.0;
if (faceId != cvf::StructGridInterface::POS_K)
{
size_t ntgResIdx = (*ntgIdxFunc)(activeCellInfo, nativeResvCellIndex);
ntg = ntgResults[ntgResIdx];
}
halfCellTrans = halfCellTransmissibility(perm, ntg, centerToFace, faceAreaVec);
}
// Neighbor cell half cell transm
{
cvf::Vec3d centerToFace = neighborCell.faceCenter(cvf::StructGridInterface::oppositeFace(faceId)) - neighborCell.center();
double perm = permResults[neighborCellPermResIdx];
double ntg = 1.0;
if (faceId != cvf::StructGridInterface::POS_K)
{
size_t ntgResIdx = (*ntgIdxFunc)(activeCellInfo, neighborResvCellIdx);
ntg = ntgResults[ntgResIdx];
}
neighborHalfCellTrans = halfCellTransmissibility(perm, ntg, centerToFace, -faceAreaVec);
}
riTransResults[tranResIdx] = newtran(cdarchy, 1.0, halfCellTrans, neighborHalfCellTrans);
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimReservoirCellResultsStorage::computeNncCombRiTrans()
{
if (!m_cellResults) return;
size_t riCombTransScalarResultIndex = m_cellResults->findScalarResultIndex(RimDefines::STATIC_NATIVE, RimDefines::combinedRiTranResultName());
if (m_ownerMainGrid->nncData()->connectionScalarResult(riCombTransScalarResultIndex)) return;
double cdarchy = darchysValue();
// Get the needed result indices we depend on
size_t permXResultIdx = findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "PERMX");
size_t permYResultIdx = findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "PERMY");
size_t permZResultIdx = findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "PERMZ");
size_t ntgResultIdx = findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "NTG");
// Get the result count, to handle that one of them might be globally defined
size_t permxResultValueCount = m_cellResults->cellScalarResults(permXResultIdx)[0].size();
size_t ntgResultValueCount = m_cellResults->cellScalarResults(ntgResultIdx)[0].size();
size_t resultValueCount = CVF_MIN(permxResultValueCount, ntgResultValueCount);
// Get all the actual result values
std::vector<double> & permXResults = m_cellResults->cellScalarResults(permXResultIdx)[0];
std::vector<double> & permYResults = m_cellResults->cellScalarResults(permYResultIdx)[0];
std::vector<double> & permZResults = m_cellResults->cellScalarResults(permZResultIdx)[0];
std::vector<double> & ntgResults = m_cellResults->cellScalarResults(ntgResultIdx)[0];
std::vector<double> & riCombTransResults = m_ownerMainGrid->nncData()->makeConnectionScalarResult(riCombTransScalarResultIndex);
// Prepare how to index the result values:
bool isPermXUsingResIdx = m_cellResults->isUsingGlobalActiveIndex(permXResultIdx);
bool isPermYUsingResIdx = m_cellResults->isUsingGlobalActiveIndex(permYResultIdx);
bool isPermZUsingResIdx = m_cellResults->isUsingGlobalActiveIndex(permZResultIdx);
bool isNtgUsingResIdx = m_cellResults->isUsingGlobalActiveIndex(ntgResultIdx);
// Set up result index function pointers
ResultIndexFunction permXIdxFunc = isPermXUsingResIdx ? &reservoirActiveCellIndex : &directReservoirCellIndex;
ResultIndexFunction permYIdxFunc = isPermYUsingResIdx ? &reservoirActiveCellIndex : &directReservoirCellIndex;
ResultIndexFunction permZIdxFunc = isPermZUsingResIdx ? &reservoirActiveCellIndex : &directReservoirCellIndex;
ResultIndexFunction ntgIdxFunc = isNtgUsingResIdx ? &reservoirActiveCellIndex : &directReservoirCellIndex;
const RigActiveCellInfo* activeCellInfo = m_cellResults->activeCellInfo();
const std::vector<cvf::Vec3d>& nodes = m_ownerMainGrid->nodes();
bool isFaceNormalsOutwards = m_ownerMainGrid->isFaceNormalsOutwards();
// NNC calculation
std::vector<RigConnection>& nncConnections = m_ownerMainGrid->nncData()->connections();
for (size_t connIdx = 0; connIdx < nncConnections.size(); connIdx++)
{
size_t nativeResvCellIndex = nncConnections[connIdx].m_c1GlobIdx;
size_t neighborResvCellIdx = nncConnections[connIdx].m_c2GlobIdx;
cvf::StructGridInterface::FaceType faceId = nncConnections[connIdx].m_c1Face;
ResultIndexFunction permIdxFunc = NULL;
std::vector<double> * permResults;
switch (faceId)
{
case cvf::StructGridInterface::POS_I:
case cvf::StructGridInterface::NEG_I:
permIdxFunc = permXIdxFunc;
permResults = &permXResults;
break;
case cvf::StructGridInterface::POS_J:
case cvf::StructGridInterface::NEG_J:
permIdxFunc = permYIdxFunc;
permResults = &permYResults;
break;
case cvf::StructGridInterface::POS_K:
case cvf::StructGridInterface::NEG_K:
permIdxFunc = permZIdxFunc;
permResults = &permZResults;
break;
}
if (!permIdxFunc) continue;
// Do nothing if we are only dealing with active cells, and this cell is not active:
size_t nativeCellPermResIdx = (*permIdxFunc)(activeCellInfo, nativeResvCellIndex);
if (nativeCellPermResIdx == cvf::UNDEFINED_SIZE_T) continue;
// Do nothing if neighbor cell has no results
size_t neighborCellPermResIdx = (*permIdxFunc)(activeCellInfo, neighborResvCellIdx);
if (neighborCellPermResIdx == cvf::UNDEFINED_SIZE_T) continue;
const RigCell& nativeCell = m_ownerMainGrid->cells()[nativeResvCellIndex];
const RigCell& neighborCell = m_ownerMainGrid->cells()[neighborResvCellIdx];
// Connection geometry
cvf::Vec3d faceAreaVec = cvf::Vec3d::ZERO;;
cvf::Vec3d faceCenter = cvf::Vec3d::ZERO;;
// Polygon center
const std::vector<cvf::Vec3d>& realPolygon = nncConnections[connIdx].m_polygon;
for (size_t pIdx = 0; pIdx < realPolygon.size(); ++pIdx)
{
faceCenter += realPolygon[pIdx];
}
faceCenter *= 1.0 / realPolygon.size();
// Polygon area vector
faceAreaVec = cvf::GeometryTools::polygonAreaNormal3D(realPolygon);
if (!isFaceNormalsOutwards) faceAreaVec = -faceAreaVec;
double halfCellTrans = 0;
double neighborHalfCellTrans = 0;
// Native cell half cell transm
{
cvf::Vec3d centerToFace = nativeCell.faceCenter(faceId) - nativeCell.center();
double perm = (*permResults)[nativeCellPermResIdx];
double ntg = 1.0;
if (faceId != cvf::StructGridInterface::POS_K)
{
size_t ntgResIdx = (*ntgIdxFunc)(activeCellInfo, nativeResvCellIndex);
ntg = ntgResults[ntgResIdx];
}
halfCellTrans = halfCellTransmissibility(perm, ntg, centerToFace, faceAreaVec);
}
// Neighbor cell half cell transm
{
cvf::Vec3d centerToFace = neighborCell.faceCenter(cvf::StructGridInterface::oppositeFace(faceId)) - neighborCell.center();
double perm = (*permResults)[neighborCellPermResIdx];
double ntg = 1.0;
if (faceId != cvf::StructGridInterface::POS_K)
{
size_t ntgResIdx = (*ntgIdxFunc)(activeCellInfo, neighborResvCellIdx);
ntg = ntgResults[ntgResIdx];
}
neighborHalfCellTrans = halfCellTransmissibility(perm, ntg, centerToFace, -faceAreaVec);
}
double newtranTemp = newtran(cdarchy, 1.0, halfCellTrans, neighborHalfCellTrans);
riCombTransResults[connIdx] = newtranTemp;
}
}
double riMult(double transResults, double riTransResults)
{
if (transResults == HUGE_VAL || riTransResults == HUGE_VAL) return HUGE_VAL;
// To make 0.0 values give 1.0 in mult value
if (cvf::Math::abs (riTransResults) < 1e-12)
{
if (cvf::Math::abs (transResults) < 1e-12)
{
return 1.0;
}
return HUGE_VAL;
}
double result = transResults / riTransResults;
return result;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimReservoirCellResultsStorage::computeRiMULTComponent(const QString& riMultCompName)
{
if (!m_cellResults) return;
// Set up which component to compute
QString riTransCompName;
QString transCompName;
if (riMultCompName == RimDefines::riMultXResultName())
{
riTransCompName = RimDefines::riTranXResultName();
transCompName = "TRANX";
}
else if (riMultCompName == RimDefines::riMultYResultName())
{
riTransCompName = RimDefines::riTranYResultName();
transCompName = "TRANY";
}
else if (riMultCompName == RimDefines::riMultZResultName())
{
riTransCompName = RimDefines::riTranZResultName();
transCompName = "TRANZ";
}
else
{
CVF_ASSERT(false);
}
// Get the needed result indices we depend on
size_t transResultIdx = findOrLoadScalarResult(RimDefines::STATIC_NATIVE, transCompName);
size_t riTransResultIdx = findOrLoadScalarResult(RimDefines::STATIC_NATIVE, riTransCompName);
// Get the result index of the output
size_t riMultResultIdx = m_cellResults->findScalarResultIndex(RimDefines::STATIC_NATIVE, riMultCompName);
CVF_ASSERT(riMultResultIdx != cvf::UNDEFINED_SIZE_T);
// Get the result count, to handle that one of them might be globally defined
CVF_ASSERT(m_cellResults->cellScalarResults(riTransResultIdx)[0].size() == m_cellResults->cellScalarResults(transResultIdx)[0].size());
size_t resultValueCount = m_cellResults->cellScalarResults(transResultIdx)[0].size();
// Get all the actual result values
std::vector<double> & riTransResults = m_cellResults->cellScalarResults(riTransResultIdx)[0];
std::vector<double> & transResults = m_cellResults->cellScalarResults(transResultIdx)[0];
std::vector<double> & riMultResults = m_cellResults->cellScalarResults(riMultResultIdx)[0];
// Set up output container to correct number of results
riMultResults.resize(resultValueCount);
const RigActiveCellInfo* activeCellInfo = m_cellResults->activeCellInfo();
for (size_t vIdx = 0; vIdx < transResults.size(); ++vIdx)
{
riMultResults[vIdx] = riMult(transResults[vIdx], riTransResults[vIdx]);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimReservoirCellResultsStorage::computeNncCombRiMULT()
{
if (!m_cellResults) return;
size_t riCombMultScalarResultIndex = m_cellResults->findScalarResultIndex(RimDefines::STATIC_NATIVE, RimDefines::combinedRiMultResultName());
size_t riCombTransScalarResultIndex = m_cellResults->findScalarResultIndex(RimDefines::STATIC_NATIVE, RimDefines::combinedRiTranResultName());
size_t combTransScalarResultIndex = m_cellResults->findScalarResultIndex(RimDefines::STATIC_NATIVE, RimDefines::combinedTransmissibilityResultName());
if (m_ownerMainGrid->nncData()->connectionScalarResult(riCombMultScalarResultIndex)) return;
std::vector<double> & riMultResults = m_ownerMainGrid->nncData()->makeConnectionScalarResult(riCombMultScalarResultIndex);
const std::vector<double> * riTransResults = m_ownerMainGrid->nncData()->connectionScalarResult(riCombTransScalarResultIndex);
const std::vector<double> * transResults = m_ownerMainGrid->nncData()->connectionScalarResult(combTransScalarResultIndex);
for (size_t nncConIdx = 0; nncConIdx < riMultResults.size(); ++nncConIdx)
{
riMultResults[nncConIdx] = riMult((*transResults)[nncConIdx], (*riTransResults)[nncConIdx]);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimReservoirCellResultsStorage::computeRiTRANSbyAreaComponent(const QString& riTransByAreaCompResultName)
{
if (!m_cellResults) return;
// Set up which component to compute
cvf::StructGridInterface::FaceType faceId = cvf::StructGridInterface::NO_FACE;
QString transCompName;
if (riTransByAreaCompResultName == RimDefines::riAreaNormTranXResultName())
{
transCompName = "TRANX";
faceId = cvf::StructGridInterface::POS_I;
}
else if (riTransByAreaCompResultName == RimDefines::riAreaNormTranYResultName())
{
transCompName = "TRANY";
faceId = cvf::StructGridInterface::POS_J;
}
else if (riTransByAreaCompResultName == RimDefines::riAreaNormTranZResultName())
{
transCompName = "TRANZ";
faceId = cvf::StructGridInterface::POS_K;
}
else
{
CVF_ASSERT(false);
}
// Get the needed result indices we depend on
size_t tranCompScResIdx = findOrLoadScalarResult(RimDefines::STATIC_NATIVE, transCompName);
// Get the result index of the output
size_t riTranByAreaScResIdx = m_cellResults->findScalarResultIndex(RimDefines::STATIC_NATIVE, riTransByAreaCompResultName);
CVF_ASSERT(riTranByAreaScResIdx != cvf::UNDEFINED_SIZE_T);
// Get the result count, to handle that one of them might be globally defined
size_t resultValueCount = m_cellResults->cellScalarResults(tranCompScResIdx)[0].size();
// Get all the actual result values
std::vector<double> & transResults = m_cellResults->cellScalarResults(tranCompScResIdx)[0];
std::vector<double> & riTransByAreaResults = m_cellResults->cellScalarResults(riTranByAreaScResIdx)[0];
// Set up output container to correct number of results
riTransByAreaResults.resize(resultValueCount);
// Prepare how to index the result values:
bool isUsingResIdx = m_cellResults->isUsingGlobalActiveIndex(tranCompScResIdx);
// Set up result index function pointers
ResultIndexFunction resValIdxFunc = isUsingResIdx ? &reservoirActiveCellIndex : &directReservoirCellIndex;
const RigActiveCellInfo* activeCellInfo = m_cellResults->activeCellInfo();
const std::vector<cvf::Vec3d>& nodes = m_ownerMainGrid->nodes();
bool isFaceNormalsOutwards = m_ownerMainGrid->isFaceNormalsOutwards();
for (size_t nativeResvCellIndex = 0; nativeResvCellIndex < m_ownerMainGrid->cells().size(); nativeResvCellIndex++)
{
// Do nothing if we are only dealing with active cells, and this cell is not active:
size_t nativeCellResValIdx = (*resValIdxFunc)(activeCellInfo, nativeResvCellIndex);
if (nativeCellResValIdx == cvf::UNDEFINED_SIZE_T) continue;
const RigCell& nativeCell = m_ownerMainGrid->cells()[nativeResvCellIndex];
RigGridBase* grid = nativeCell.hostGrid();
size_t gridLocalNativeCellIndex = nativeCell.gridLocalCellIndex();
size_t i, j, k, gridLocalNeighborCellIdx;
grid->ijkFromCellIndex(gridLocalNativeCellIndex, &i, &j, &k);
if (grid->cellIJKNeighbor(i, j, k, faceId, &gridLocalNeighborCellIdx))
{
size_t neighborResvCellIdx = grid->reservoirCellIndex(gridLocalNeighborCellIdx);
const RigCell& neighborCell = m_ownerMainGrid->cells()[neighborResvCellIdx];
// Connection geometry
const RigFault* fault = grid->mainGrid()->findFaultFromCellIndexAndCellFace(nativeResvCellIndex, faceId);
bool isOnFault = fault;
cvf::Vec3d faceAreaVec;
if (isOnFault)
{
calculateConnectionGeometry(nativeCell, neighborCell, nodes, faceId, &faceAreaVec);
}
else
{
faceAreaVec = nativeCell.faceNormalWithAreaLenght(faceId);
}
double areaOfOverlap = faceAreaVec.length();
double transCompValue = transResults[nativeCellResValIdx];
riTransByAreaResults[nativeCellResValIdx] = transCompValue / areaOfOverlap;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimReservoirCellResultsStorage::computeNncCombRiTRANSbyArea()
{
if (!m_cellResults) return;
size_t riCombTransByAreaScResIdx = m_cellResults->findScalarResultIndex(RimDefines::STATIC_NATIVE, RimDefines::combinedRiAreaNormTranResultName());
size_t combTransScalarResultIndex = m_cellResults->findScalarResultIndex(RimDefines::STATIC_NATIVE, RimDefines::combinedTransmissibilityResultName());
if (m_ownerMainGrid->nncData()->connectionScalarResult(riCombTransByAreaScResIdx)) return;
std::vector<double> & riAreaNormTransResults = m_ownerMainGrid->nncData()->makeConnectionScalarResult(riCombTransByAreaScResIdx);
const std::vector<double> * transResults = m_ownerMainGrid->nncData()->connectionScalarResult(combTransScalarResultIndex);
const std::vector<RigConnection>& connections = m_ownerMainGrid->nncData()->connections();
for (size_t nncConIdx = 0; nncConIdx < riAreaNormTransResults.size(); ++nncConIdx)
{
const std::vector<cvf::Vec3d>& realPolygon = connections[nncConIdx].m_polygon;
cvf::Vec3d faceAreaVec = cvf::GeometryTools::polygonAreaNormal3D(realPolygon);
double areaOfOverlap = faceAreaVec.length();
riAreaNormTransResults[nncConIdx] = (*transResults)[nncConIdx] / areaOfOverlap;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimReservoirCellResultsStorage::setCellResults(RigCaseCellResultsData* cellResults)
{
m_cellResults = cellResults;
if (m_cellResults == NULL)
return;
// Now that we have got the results container, we can finally
// Read data from the internal storage and populate it
if (m_resultCacheFileName().isEmpty())
return;
// Get the name of the cache name relative to the current project file position
QString newValidCacheFileName = getValidCacheFileName();
QFile storageFile(newValidCacheFileName);
// Warn if we thought we were to find some data on the storage file
if (!storageFile.exists() && m_resultCacheMetaData.size())
{
qWarning() << "Reading stored results: Missing the storage file : " + newValidCacheFileName;
return;
}
if (!storageFile.open(QIODevice::ReadOnly))
{
qWarning() << "Reading stored results: Can't open the file : " + newValidCacheFileName;
return;
}
QDataStream stream(&storageFile);
stream.setVersion(QDataStream::Qt_4_6);
quint32 magicNumber = 0;
quint32 versionNumber = 0;
stream >> magicNumber;
if (magicNumber != 0xCEECAC4E)
{
qWarning() << "Reading stored results: The storage file has wrong type ";
return;
}
stream >> versionNumber;
if (versionNumber > 1 )
{
qWarning() << "Reading stored results: The storage file has been written by a newer version of ResInsight";
return;
}
caf::ProgressInfo progress(m_resultCacheMetaData.size(), "Reading internally stored results");
// Fill the object with data from the storage
for (size_t rIdx = 0; rIdx < m_resultCacheMetaData.size(); ++rIdx)
{
RimReservoirCellResultsStorageEntryInfo* resInfo = m_resultCacheMetaData[rIdx];
size_t resultIndex = m_cellResults->addEmptyScalarResult(resInfo->m_resultType(), resInfo->m_resultName(), true);
m_cellResults->setTimeStepDates(resultIndex, resInfo->m_timeStepDates());
progress.setProgressDescription(resInfo->m_resultName);
for (size_t tsIdx = 0; tsIdx < resInfo->m_timeStepDates().size(); ++tsIdx)
{
std::vector<double>* data = NULL;
data = &(m_cellResults->cellScalarResults(rIdx, tsIdx));
quint64 cellCount = 0;
stream >> cellCount;
data->resize(cellCount, HUGE_VAL);
for (size_t cIdx = 0; cIdx < cellCount; ++cIdx)
{
stream >> (*data)[cIdx];
}
}
progress.incrementProgress();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimReservoirCellResultsStorage::setMainGrid(RigMainGrid* mainGrid)
{
m_ownerMainGrid = mainGrid;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RimReservoirCellResultsStorage::storedResultsCount()
{
return m_resultCacheMetaData.size();
}
//--------------------------------------------------------------------------------------------------
/// If we have any results on any time step, assume we have loaded results
//--------------------------------------------------------------------------------------------------
bool RimReservoirCellResultsStorage::isDataPresent(size_t scalarResultIndex) const
{
if (scalarResultIndex >= m_cellResults->resultCount())
{
return false;
}
const std::vector< std::vector<double> > data = m_cellResults->cellScalarResults(scalarResultIndex);
for (size_t tsIdx = 0; tsIdx < data.size(); ++tsIdx)
{
if (data[tsIdx].size())
{
return true;
}
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimReservoirCellResultsStorage::darchysValue()
{
// See "Cartesian transmissibility calculations" in the "Eclipse Technical Description"
// CDARCY Darcys constant
// = 0.00852702 (E300); 0.008527 (ECLIPSE 100) (METRIC)
// = 0.00112712 (E300); 0.001127 (ECLIPSE 100) (FIELD)
// = 3.6 (LAB)
// = 0.00864 (PVT - M)
double darchy = 0.008527; // (ECLIPSE 100) (METRIC)
RimEclipseCase* rimCase = NULL;
this->firstAncestorOfType(rimCase);
if (rimCase && rimCase->reservoirData())
{
RigCaseData::UnitsType unitsType = rimCase->reservoirData()->unitsType();
if (unitsType == RigCaseData::UNITS_FIELD)
{
darchy = 0.001127;
}
else if (unitsType == RigCaseData::UNITS_METRIC)
{
darchy = 0.008527;
}
else if (unitsType == RigCaseData::UNITS_LAB)
{
darchy = 3.6;
}
else
{
darchy = 0.00864; // Assuming (PVT - M)
CVF_TIGHT_ASSERT(false); // The enum and doc does not state that the PVT-M actually exists, so to trap this in debug
}
}
return darchy;
}
CAF_PDM_SOURCE_INIT(RimReservoirCellResultsStorageEntryInfo, "ResultStorageEntryInfo");
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimReservoirCellResultsStorageEntryInfo::RimReservoirCellResultsStorageEntryInfo()
{
CAF_PDM_InitObject("Cache Entry", "", "", "");
CAF_PDM_InitField(&m_resultType, "ResultType", caf::AppEnum<RimDefines::ResultCatType>(RimDefines::REMOVED), "ResultType", "", "" ,"");
CAF_PDM_InitField(&m_resultName, "ResultName", QString(), "ResultName", "", "" ,"");
CAF_PDM_InitFieldNoDefault(&m_timeStepDates, "TimeSteps", "TimeSteps", "", "" ,"");
CAF_PDM_InitField(&m_filePosition, "FilePositionDataStart", qint64(-1), "FilePositionDataStart", "", "" ,"");
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimReservoirCellResultsStorageEntryInfo::~RimReservoirCellResultsStorageEntryInfo()
{
}