ResInsight/ApplicationCode/ReservoirDataModel/RigCaseCellResultsData.h
2017-08-11 15:10:08 +02:00

136 lines
8.3 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011- Statoil ASA
// Copyright (C) 2013- Ceetron Solutions AS
// Copyright (C) 2011-2012 Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "RifReaderInterface.h"
#include "RiaDefines.h"
#include "cvfCollection.h"
#include <QDateTime>
#include <vector>
#include <cmath>
class RifReaderInterface;
class RigActiveCellInfo;
class RigMainGrid;
class RigEclipseResultInfo;
class RigStatisticsDataCache;
class RigEclipseTimeStepInfo;
//==================================================================================================
/// Class containing the results for the complete number of active cells. Both main grid and LGR's
//==================================================================================================
class RigCaseCellResultsData : public cvf::Object
{
public:
explicit RigCaseCellResultsData(RigMainGrid* ownerGrid);
void setMainGrid(RigMainGrid* ownerGrid);
void setActiveCellInfo(RigActiveCellInfo* activeCellInfo) { m_activeCellInfo = activeCellInfo;}
RigActiveCellInfo* activeCellInfo() { return m_activeCellInfo;}
const RigActiveCellInfo* activeCellInfo() const { return m_activeCellInfo;}
// Max and min values of the results
void recalculateStatistics(size_t scalarResultIndex);
void minMaxCellScalarValues(size_t scalarResultIndex, double& min, double& max);
void minMaxCellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& min, double& max);
void posNegClosestToZero(size_t scalarResultIndex, double& pos, double& neg);
void posNegClosestToZero(size_t scalarResultIndex, size_t timeStepIndex, double& pos, double& neg);
const std::vector<size_t>& cellScalarValuesHistogram(size_t scalarResultIndex);
const std::vector<size_t>& cellScalarValuesHistogram(size_t scalarResultIndex, size_t timeStepIndex);
void p10p90CellScalarValues(size_t scalarResultIndex, double& p10, double& p90);
void p10p90CellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& p10, double& p90);
void meanCellScalarValues(size_t scalarResultIndex, double& meanValue);
void meanCellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& meanValue);
const std::vector<int>& uniqueCellScalarValues(size_t scalarResultIndex);
void sumCellScalarValues(size_t scalarResultIndex, double& sumValue);
void sumCellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& sumValue);
// Access meta-information about the results
size_t resultCount() const;
size_t timeStepCount(size_t scalarResultIndex) const;
size_t maxTimeStepCount(size_t* scalarResultIndex = NULL) const;
QStringList resultNames(RiaDefines::ResultCatType type) const;
bool isUsingGlobalActiveIndex(size_t scalarResultIndex) const;
bool hasFlowDiagUsableFluxes() const;
std::vector<QDateTime> timeStepDates() const;
QDateTime timeStepDate(size_t scalarResultIndex, size_t timeStepIndex) const;
std::vector<QDateTime> timeStepDates(size_t scalarResultIndex) const;
std::vector<double> daysSinceSimulationStart() const;
std::vector<double> daysSinceSimulationStart(size_t scalarResultIndex) const;
int reportStepNumber(size_t scalarResultIndex, size_t timeStepIndex) const;
std::vector<int> reportStepNumbers(size_t scalarResultIndex) const;
std::vector<RigEclipseTimeStepInfo> timeStepInfos(size_t scalarResultIndex) const;
void setTimeStepInfos(size_t scalarResultIndex, const std::vector<RigEclipseTimeStepInfo>& timeStepInfos);
// Find or create a slot for the results
size_t findScalarResultIndex(RiaDefines::ResultCatType type, const QString& resultName) const;
size_t findScalarResultIndex(const QString& resultName) const;
size_t addEmptyScalarResult(RiaDefines::ResultCatType type, const QString& resultName, bool needsToBeStored);
QString makeResultNameUnique(const QString& resultNameProposal) const;
void createPlaceholderResultEntries();
void removeResult(const QString& resultName);
void clearAllResults();
void freeAllocatedResultsData();
// Access the results data
const std::vector< std::vector<double> > & cellScalarResults(size_t scalarResultIndex) const;
std::vector< std::vector<double> > & cellScalarResults(size_t scalarResultIndex);
std::vector<double>& cellScalarResults(size_t scalarResultIndex, size_t timeStepIndex);
bool updateResultName(RiaDefines::ResultCatType resultType, QString& oldName, const QString& newName);
public:
const std::vector<RigEclipseResultInfo>& infoForEachResultIndex() { return m_resultInfos;}
bool mustBeCalculated(size_t scalarResultIndex) const;
void setMustBeCalculated(size_t scalarResultIndex);
public:
size_t addStaticScalarResult(RiaDefines::ResultCatType type,
const QString& resultName,
bool needsToBeStored,
size_t resultValueCount);
bool findTransmissibilityResults(size_t& tranX, size_t& tranY, size_t& tranZ) const;
private:
std::vector< std::vector< std::vector<double> > > m_cellScalarResults; ///< Scalar results on the complete reservoir for each Result index (ResultVariable) and timestep
cvf::Collection<RigStatisticsDataCache> m_statisticsDataCache;
private:
std::vector<RigEclipseResultInfo> m_resultInfos;
RigMainGrid* m_ownerMainGrid;
RigActiveCellInfo* m_activeCellInfo;
};