ResInsight/ApplicationCode/Commands/CompletionExportCommands/RicExportFractureCompletionsImpl.cpp

775 lines
36 KiB
C++
Raw Blame History

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RicExportFractureCompletionsImpl.h"
#include "RicWellPathFractureReportItem.h"
#include "RiaLogging.h"
#include "RiaQDateTimeTools.h"
#include "RiaSummaryTools.h"
#include "RimEclipseCase.h"
#include "RimEclipseResultCase.h"
#include "RimEclipseView.h"
#include "RimFracture.h"
#include "RimFractureContainmentTools.h"
#include "RimFractureTemplate.h"
#include "RimObservedEclipseUserData.h"
#include "RimProject.h"
#include "RimSimWellFracture.h"
#include "RimSimWellFractureCollection.h"
#include "RimSimWellInView.h"
#include "RimStimPlanFractureTemplate.h"
#include "RimSummaryCase.h"
#include "RimSummaryCaseMainCollection.h"
#include "RimWellPath.h"
#include "RimWellPathCompletions.h"
#include "RimWellPathFracture.h"
#include "RimWellPathFractureCollection.h"
#include "RifEclipseSummaryAddress.h"
#include "RifSummaryReaderInterface.h"
#include "RigCaseCellResultsData.h"
#include "RigEclipseCaseData.h"
#include "RigEclipseToStimPlanCalculator.h"
#include "RigEclipseToStimPlanCellTransmissibilityCalculator.h"
#include "RigFractureCell.h"
#include "RigFractureGrid.h"
#include "RigFractureTransmissibilityEquations.h"
#include "RigMainGrid.h"
#include "RigResultAccessorFactory.h"
#include "RigSimWellData.h"
#include "RigSimulationWellCoordsAndMD.h"
#include "RigTransmissibilityCondenser.h"
#include "RigTransmissibilityEquations.h"
#include "RigWellPath.h"
#include "RigWellPathStimplanIntersector.h"
#include <vector>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigCompletionData> RicExportFractureCompletionsImpl::generateCompdatValuesForWellPath(
RimWellPath* wellPath,
RimEclipseCase* caseToApply,
std::vector<RicWellPathFractureReportItem>* fractureDataForReport,
QTextStream* outputStreamForIntermediateResultsText,
PressureDepletionParameters pdParams)
{
std::vector<const RimFracture*> fracturesAlongWellPath;
for (auto& frac : wellPath->fractureCollection()->activeFractures())
{
frac->ensureValidNonDarcyProperties();
fracturesAlongWellPath.push_back(frac);
}
return generateCompdatValues(caseToApply,
wellPath->completions()->wellNameForExport(),
wellPath->wellPathGeometry(),
fracturesAlongWellPath,
fractureDataForReport,
outputStreamForIntermediateResultsText,
pdParams);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigCompletionData>
RicExportFractureCompletionsImpl::generateCompdatValuesForSimWell(RimEclipseCase* eclipseCase,
const RimSimWellInView* well,
QTextStream* outputStreamForIntermediateResultsText,
PressureDepletionParameters pdParams)
{
std::vector<RigCompletionData> completionData;
auto branches = well->wellPipeBranches();
for (size_t branchIndex = 0; branchIndex < branches.size(); ++branchIndex)
{
std::vector<const RimFracture*> fractures;
for (RimSimWellFracture* fracture : well->simwellFractureCollection->simwellFractures())
{
if (fracture->isChecked() && static_cast<size_t>(fracture->branchIndex()) == branchIndex)
{
fractures.push_back(fracture);
}
}
std::vector<RigCompletionData> branchCompletions = generateCompdatValues(eclipseCase,
well->name(),
branches[branchIndex],
fractures,
nullptr,
outputStreamForIntermediateResultsText,
pdParams);
completionData.insert(completionData.end(), branchCompletions.begin(), branchCompletions.end());
}
return completionData;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigCompletionData>
RicExportFractureCompletionsImpl::generateCompdatValues(RimEclipseCase* caseToApply,
const QString& wellPathName,
const RigWellPath* wellPathGeometry,
const std::vector<const RimFracture*>& fractures,
std::vector<RicWellPathFractureReportItem>* fractureDataReportItems,
QTextStream* outputStreamForIntermediateResultsText,
PressureDepletionParameters pdParams)
{
std::vector<RigCompletionData> fractureCompletions;
if (!caseToApply || !caseToApply->eclipseCaseData())
{
return fractureCompletions;
}
{
// Load the data required by computations to be able to use const access only inside OpenMP loop
std::vector<QString> resultNames = RigEclipseToStimPlanCellTransmissibilityCalculator::requiredResultNames();
if (!caseToApply->loadStaticResultsByName(resultNames))
{
QString msg;
msg += "Compdat Export : Required data missing. Required results ";
for (const auto& r : resultNames)
{
msg += " ";
msg += r;
}
RiaLogging::error(msg);
return fractureCompletions;
}
}
{
// Load the data required by fracture summary header
std::vector<QString> resultNames{"TRANX", "TRANY", "TRANZ"};
caseToApply->loadStaticResultsByName(resultNames);
}
{
// Optional results
std::vector<QString> resultNames = RigEclipseToStimPlanCellTransmissibilityCalculator::optionalResultNames();
caseToApply->loadStaticResultsByName(resultNames);
}
if (pdParams.performScaling)
{
RigCaseCellResultsData* results = caseToApply->results(RiaDefines::MATRIX_MODEL);
results->findOrLoadScalarResult(RiaDefines::DYNAMIC_NATIVE, "PRESSURE");
}
return generateCompdatValuesConst(caseToApply,
wellPathName,
wellPathGeometry,
fractures,
fractureDataReportItems,
outputStreamForIntermediateResultsText,
pdParams);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigCompletionData> RicExportFractureCompletionsImpl::generateCompdatValuesConst(
const RimEclipseCase* caseToApply,
const QString& wellPathName,
const RigWellPath* wellPathGeometry,
const std::vector<const RimFracture*>& fractures,
std::vector<RicWellPathFractureReportItem>* fractureDataReportItems,
QTextStream* outputStreamForIntermediateResultsText,
PressureDepletionParameters pdParams)
{
std::vector<RigCompletionData> fractureCompletions;
if (!caseToApply || !caseToApply->eclipseCaseData())
{
return fractureCompletions;
}
double cDarcyInCorrectUnit = RiaEclipseUnitTools::darcysConstant(caseToApply->eclipseCaseData()->unitsType());
const RigMainGrid* mainGrid = caseToApply->eclipseCaseData()->mainGrid();
const RigCaseCellResultsData* results = caseToApply->results(RiaDefines::MATRIX_MODEL);
size_t pressureResultIndex = results->findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "PRESSURE");
const RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo(RiaDefines::MATRIX_MODEL);
bool performPressureDepletionScaling = pdParams.performScaling;
int initialWellProductionTimeStep = 0;
double currentWellPressure = 0;
if (performPressureDepletionScaling)
{
double userWBHP = pdParams.userWBHP;
double initialWBHPFromSummary = 0.0;
double currentWBHPFromSummary = 0.0;
// Find well pressures (WBHP) from summary case.
getWellPressuresAndInitialProductionTimeStepFromSummaryData(caseToApply,
wellPathName,
pdParams.pressureScalingTimeStep,
&initialWellProductionTimeStep,
&initialWBHPFromSummary,
&currentWBHPFromSummary);
if (pdParams.wbhpSource == WBHP_FROM_SUMMARY)
{
currentWellPressure = currentWBHPFromSummary;
if (pdParams.pressureScalingTimeStep <= initialWellProductionTimeStep)
{
currentWellPressure = userWBHP;
}
}
else
{
currentWellPressure = userWBHP;
}
}
const std::vector<std::vector<double>>* pressureResultVector = nullptr;
const std::vector<double>* currentMatrixPressures = nullptr;
if (performPressureDepletionScaling)
{
pressureResultVector = &results->cellScalarResults(pressureResultIndex);
CVF_ASSERT(!pressureResultVector->empty());
if (pdParams.pressureScalingTimeStep < static_cast<int>(pressureResultVector->size()))
{
currentMatrixPressures = &pressureResultVector->at(pdParams.pressureScalingTimeStep);
}
else
{
// Don't perform scaling if the current pressure time step is beyond the case range.
performPressureDepletionScaling = false;
}
}
// To handle several fractures in the same eclipse cell we need to keep track of the transmissibility
// to the well from each fracture intersecting the cell and sum these transmissibilities at the end.
// std::map <eclipseCellIndex ,map< fracture, trans> >
// std::map<size_t, std::map<const RimFracture*, double>> eclCellIdxToTransPrFractureMap;
std::vector<std::vector<RigCompletionData>> sharedComplForFracture(fractures.size());
#pragma omp parallel for
for (int i = 0; i < (int)fractures.size(); i++)
{
const RimFracture* fracture = fractures[i];
const RimFractureTemplate* fracTemplate = fracture->fractureTemplate();
if (!fracTemplate) continue;
const RigFractureGrid* fractureGrid = fracTemplate->fractureGrid();
if (!fractureGrid) continue;
bool useFiniteConductivityInFracture = (fracTemplate->conductivityType() == RimFractureTemplate::FINITE_CONDUCTIVITY);
// If finite cond chosen and conductivity not present in stimplan file, do not calculate trans for this fracture
if (useFiniteConductivityInFracture && !checkForStimPlanConductivity(fracTemplate, fracture))
{
continue;
}
RigTransmissibilityCondenser transCondenser;
//////
// Calculate Matrix To Fracture Trans
RigEclipseToStimPlanCalculator eclToFractureCalc(
caseToApply, fracture->transformMatrix(), fracTemplate->skinFactor(), cDarcyInCorrectUnit, *fractureGrid, fracture);
eclToFractureCalc.appendDataToTransmissibilityCondenser(useFiniteConductivityInFracture, &transCondenser);
if (useFiniteConductivityInFracture)
{
calculateInternalFractureTransmissibilities(fractureGrid, cDarcyInCorrectUnit, transCondenser);
}
if (useFiniteConductivityInFracture)
{
calculateFractureToWellTransmissibilities(
fracTemplate, fractureGrid, fracture, cDarcyInCorrectUnit, wellPathGeometry, transCondenser);
}
/////
// Insert total transmissibility from eclipse-cell to well for this fracture into the map
std::map<size_t, double> matrixToWellTrans = calculateMatrixToWellTransmissibilities(transCondenser);
double maxPressureDrop = 0.0, minPressureDrop = 0.0;
if (performPressureDepletionScaling)
{
RigTransmissibilityCondenser scaledCondenser = transCondenser;
// 1. Scale matrix to fracture transmissibilities by matrix to fracture pressure
std::map<size_t, double> originalLumpedMatrixToFractureTrans = scaledCondenser.scaleMatrixToFracTransByMatrixWellDP(
actCellInfo,
currentWellPressure,
*currentMatrixPressures, &minPressureDrop, &maxPressureDrop);
// 2: Calculate new external transmissibilities
scaledCondenser.calculateCondensedTransmissibilities();
{ // 3: H<>gst<73>l correction.
// a. Calculate new effective fracture to well transmissiblities
std::map<size_t, double> fictitiousFractureToWellTransmissibilities =
scaledCondenser.calculateFicticiousFractureToWellTransmissibilities();
// b. Calculate new effective matrix to well transmissibilities
std::map<size_t, double> effectiveMatrixToWellTrans =
scaledCondenser.calculateEffectiveMatrixToWellTransmissibilities(originalLumpedMatrixToFractureTrans,
fictitiousFractureToWellTransmissibilities);
matrixToWellTrans = effectiveMatrixToWellTrans;
}
}
std::vector<RigCompletionData> allCompletionsForOneFracture =
generateCompdatValuesForFracture(matrixToWellTrans, wellPathName, caseToApply, fracture, fracTemplate);
if (fractureDataReportItems)
{
RicWellPathFractureReportItem reportItem(
wellPathName, fracture->name(), fracTemplate->name(), fracture->fractureMD());
reportItem.setUnitSystem(fracTemplate->fractureTemplateUnit());
reportItem.setPressureDepletionParameters(performPressureDepletionScaling,
caseToApply->timeStepStrings()[pdParams.pressureScalingTimeStep],
caf::AppEnum<PressureDepletionWBHPSource>::uiTextFromIndex(pdParams.wbhpSource),
pdParams.userWBHP, currentWellPressure, minPressureDrop, maxPressureDrop);
RicExportFractureCompletionsImpl::calculateAndSetReportItemData(
allCompletionsForOneFracture, eclToFractureCalc, reportItem);
#pragma omp critical(critical_section_fractureDataReportItems)
{
fractureDataReportItems->push_back(reportItem);
}
}
std::copy(allCompletionsForOneFracture.begin(),
allCompletionsForOneFracture.end(),
std::back_inserter(sharedComplForFracture[i]));
if (outputStreamForIntermediateResultsText)
{
#pragma omp critical(critical_section_outputStreamForIntermediateResultsText)
{
outputIntermediateResultsText(
outputStreamForIntermediateResultsText, fracture, transCondenser, mainGrid, fractureGrid);
}
}
}
for (const auto& completions : sharedComplForFracture)
{
std::copy(completions.begin(), completions.end(), std::back_inserter(fractureCompletions));
}
return fractureCompletions;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RicExportFractureCompletionsImpl::getWellPressuresAndInitialProductionTimeStepFromSummaryData(
const RimEclipseCase* caseToApply,
const QString& wellPathName,
int currentTimeStep,
int* initialCaseTimeStep,
double* initialWellPressure,
double* currentWellPressure)
{
const RimEclipseResultCase* resultCase = dynamic_cast<const RimEclipseResultCase*>(caseToApply);
if (resultCase)
{
std::vector<QDateTime> caseTimeSteps = resultCase->timeStepDates();
QDateTime initialProductionDate;
QDateTime currentDate;
if (currentTimeStep < static_cast<int>(caseTimeSteps.size()))
{
currentDate = caseTimeSteps[currentTimeStep];
}
else
{
currentDate = caseTimeSteps.back();
}
RifEclipseSummaryAddress wbhpPressureAddress = RifEclipseSummaryAddress::wellAddress("WBHP", wellPathName.toStdString());
RimSummaryCaseMainCollection* mainCollection = RiaSummaryTools::summaryCaseMainCollection();
if (mainCollection)
{
RimSummaryCase* summaryCase = mainCollection->findSummaryCaseFromEclipseResultCase(resultCase);
if (summaryCase)
{
std::vector<double> values;
if (summaryCase->summaryReader()->values(wbhpPressureAddress, &values))
{
std::vector<time_t> summaryTimeSteps = summaryCase->summaryReader()->timeSteps(wbhpPressureAddress);
CVF_ASSERT(values.size() == summaryTimeSteps.size());
for (size_t i = 0; i < summaryTimeSteps.size(); ++i)
{
QDateTime summaryDate = RiaQDateTimeTools::fromTime_t(summaryTimeSteps[i]);
if (initialProductionDate.isNull() && values[i] > 0.0)
{
initialProductionDate = summaryDate;
*initialWellPressure = values[i];
}
if (summaryDate <= currentDate)
{
*currentWellPressure = values[i];
}
}
}
}
}
if (initialProductionDate.isValid())
{
for (size_t i = 0; i < caseTimeSteps.size(); ++i)
{
// Pick last time step that isn't bigger than the initial production time.
if (caseTimeSteps[i] < initialProductionDate)
{
*initialCaseTimeStep = static_cast<int>(i);
}
else
{
break;
}
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RicExportFractureCompletionsImpl::checkForStimPlanConductivity(const RimFractureTemplate* fracTemplate,
const RimFracture* fracture)
{
auto fracTemplateStimPlan = dynamic_cast<const RimStimPlanFractureTemplate*>(fracTemplate);
if (fracTemplateStimPlan)
{
if (!fracTemplateStimPlan->hasConductivity())
{
RiaLogging::error("Trying to export completion data for stimPlan fracture without conductivity data for " +
fracture->name());
RiaLogging::error("No transmissibilities will be calculated for " + fracture->name());
return false;
}
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RicExportFractureCompletionsImpl::calculateInternalFractureTransmissibilities(const RigFractureGrid* fractureGrid,
double cDarcyInCorrectUnit,
RigTransmissibilityCondenser& transCondenser)
{
for (size_t i = 0; i < fractureGrid->iCellCount(); i++)
{
for (size_t j = 0; j < fractureGrid->jCellCount(); j++)
{
size_t fractureCellIndex = fractureGrid->getGlobalIndexFromIJ(i, j);
const RigFractureCell& fractureCell = fractureGrid->cellFromIndex(fractureCellIndex);
if (!fractureCell.hasNonZeroConductivity()) continue;
if (i < fractureGrid->iCellCount() - 1)
{
size_t fractureCellNeighbourXIndex = fractureGrid->getGlobalIndexFromIJ(i + 1, j);
const RigFractureCell& fractureCellNeighbourX = fractureGrid->cellFromIndex(fractureCellNeighbourXIndex);
double horizontalTransToXneigbour = RigFractureTransmissibilityEquations::centerToCenterFractureCellTrans(
fractureCell.getConductivityValue(),
fractureCell.cellSizeX(),
fractureCell.cellSizeZ(),
fractureCellNeighbourX.getConductivityValue(),
fractureCellNeighbourX.cellSizeX(),
fractureCellNeighbourX.cellSizeZ(),
cDarcyInCorrectUnit);
transCondenser.addNeighborTransmissibility(
{false, RigTransmissibilityCondenser::CellAddress::STIMPLAN, fractureCellIndex},
{false, RigTransmissibilityCondenser::CellAddress::STIMPLAN, fractureCellNeighbourXIndex},
horizontalTransToXneigbour);
}
if (j < fractureGrid->jCellCount() - 1)
{
size_t fractureCellNeighbourZIndex = fractureGrid->getGlobalIndexFromIJ(i, j + 1);
const RigFractureCell& fractureCellNeighbourZ = fractureGrid->cellFromIndex(fractureCellNeighbourZIndex);
double verticalTransToZneigbour = RigFractureTransmissibilityEquations::centerToCenterFractureCellTrans(
fractureCell.getConductivityValue(),
fractureCell.cellSizeZ(),
fractureCell.cellSizeX(),
fractureCellNeighbourZ.getConductivityValue(),
fractureCellNeighbourZ.cellSizeZ(),
fractureCellNeighbourZ.cellSizeX(),
cDarcyInCorrectUnit);
transCondenser.addNeighborTransmissibility(
{false, RigTransmissibilityCondenser::CellAddress::STIMPLAN, fractureCellIndex},
{false, RigTransmissibilityCondenser::CellAddress::STIMPLAN, fractureCellNeighbourZIndex},
verticalTransToZneigbour);
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RicExportFractureCompletionsImpl::calculateFractureToWellTransmissibilities(const RimFractureTemplate* fracTemplate,
const RigFractureGrid* fractureGrid,
const RimFracture* fracture,
double cDarcyInCorrectUnit,
const RigWellPath* wellPathGeometry,
RigTransmissibilityCondenser& transCondenser)
{
////
// If fracture has orientation Azimuth or Transverse, assume only radial inflow
if (fracTemplate->orientationType() == RimFractureTemplate::AZIMUTH ||
fracTemplate->orientationType() == RimFractureTemplate::TRANSVERSE_WELL_PATH)
{
std::pair<size_t, size_t> wellCellIJ = fractureGrid->fractureCellAtWellCenter();
size_t wellCellIndex = fractureGrid->getGlobalIndexFromIJ(wellCellIJ.first, wellCellIJ.second);
const RigFractureCell& wellCell = fractureGrid->cellFromIndex(wellCellIndex);
double radialTrans = RigFractureTransmissibilityEquations::fractureCellToWellRadialTrans(wellCell.getConductivityValue(),
wellCell.cellSizeX(),
wellCell.cellSizeZ(),
fracture->wellRadius(),
fracTemplate->skinFactor(),
cDarcyInCorrectUnit);
transCondenser.addNeighborTransmissibility({true, RigTransmissibilityCondenser::CellAddress::WELL, 1},
{false, RigTransmissibilityCondenser::CellAddress::STIMPLAN, wellCellIndex},
radialTrans);
}
else if (fracTemplate->orientationType() == RimFractureTemplate::ALONG_WELL_PATH)
{
////
// If fracture has orientation along well, linear inflow along well and radial flow at endpoints
RigWellPathStimplanIntersector wellFractureIntersector(wellPathGeometry, fracture);
const std::map<size_t, RigWellPathStimplanIntersector::WellCellIntersection>& fractureWellCells =
wellFractureIntersector.intersections();
for (const auto& fracCellIdxIsectDataPair : fractureWellCells)
{
size_t fracWellCellIdx = fracCellIdxIsectDataPair.first;
RigWellPathStimplanIntersector::WellCellIntersection intersection = fracCellIdxIsectDataPair.second;
const RigFractureCell& fractureWellCell = fractureGrid->cellFromIndex(fracWellCellIdx);
double linearTrans = 0.0;
if (intersection.hlength > 0.0 || intersection.vlength > 0.0)
{
linearTrans =
RigFractureTransmissibilityEquations::fractureCellToWellLinearTrans(fractureWellCell.getConductivityValue(),
fractureWellCell.cellSizeX(),
fractureWellCell.cellSizeZ(),
intersection.vlength,
intersection.hlength,
fracture->perforationEfficiency(),
fracTemplate->skinFactor(),
cDarcyInCorrectUnit,
fracture->wellRadius());
}
transCondenser.addNeighborTransmissibility(
{true, RigTransmissibilityCondenser::CellAddress::WELL, 1},
{false, RigTransmissibilityCondenser::CellAddress::STIMPLAN, fracWellCellIdx},
linearTrans);
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::map<size_t, double>
RicExportFractureCompletionsImpl::calculateMatrixToWellTransmissibilities(RigTransmissibilityCondenser& transCondenser)
{
std::map<size_t, double> matrixToWellTransmissibilities;
std::set<RigTransmissibilityCondenser::CellAddress> externalCells = transCondenser.externalCells();
for (RigTransmissibilityCondenser::CellAddress externalCell : externalCells)
{
if (externalCell.m_cellIndexSpace == RigTransmissibilityCondenser::CellAddress::ECLIPSE)
{
double trans = transCondenser.condensedTransmissibility(externalCell,
{true, RigTransmissibilityCondenser::CellAddress::WELL, 1});
matrixToWellTransmissibilities.insert(std::make_pair(externalCell.m_globalCellIdx, trans));
}
}
return matrixToWellTransmissibilities;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigCompletionData> RicExportFractureCompletionsImpl::generateCompdatValuesForFracture(
const std::map<size_t, double>& matrixToWellTransmissibilites,
const QString& wellPathName,
const RimEclipseCase* caseToApply,
const RimFracture* fracture,
const RimFractureTemplate* fracTemplate)
{
std::vector<RigCompletionData> allCompletionsForOneFracture;
for (const auto& matrixToWellTransmissibility : matrixToWellTransmissibilites)
{
size_t globalCellIndex = matrixToWellTransmissibility.first;
double trans = matrixToWellTransmissibility.second;
RigCompletionData compDat(
wellPathName, RigCompletionDataGridCell(globalCellIndex, caseToApply->mainGrid()), fracture->fractureMD());
double diameter = 2.0 * fracture->wellRadius();
compDat.setFromFracture(trans, fracTemplate->skinFactor(), diameter);
compDat.addMetadata(fracture->name(), QString::number(trans));
compDat.setSourcePdmObject(fracture);
allCompletionsForOneFracture.push_back(compDat);
}
if (fracTemplate->isNonDarcyFlowEnabled())
{
computeNonDarcyFlowParameters(fracture, allCompletionsForOneFracture);
}
return allCompletionsForOneFracture;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RicExportFractureCompletionsImpl::computeNonDarcyFlowParameters(const RimFracture* fracture,
std::vector<RigCompletionData>& allCompletionsForOneFracture)
{
double dFactorForFracture = fracture->nonDarcyProperties().dFactor;
double khForFracture = fracture->nonDarcyProperties().conductivity;
double sumOfTransmissibilitiesInFracture = sumUpTransmissibilities(allCompletionsForOneFracture);
for (auto& c : allCompletionsForOneFracture)
{
// NOTE : What is supposed to happen when the transmissibility is close to zero?
double dFactorForOneConnection = dFactorForFracture * sumOfTransmissibilitiesInFracture / c.transmissibility();
c.setDFactor(dFactorForOneConnection);
double khForOneConnection = khForFracture * c.transmissibility() / sumOfTransmissibilitiesInFracture;
c.setKh(khForOneConnection);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double
RicExportFractureCompletionsImpl::sumUpTransmissibilities(const std::vector<RigCompletionData>& allCompletionsForOneFracture)
{
double transmissibility = 0.0;
for (const auto& c : allCompletionsForOneFracture)
{
transmissibility += c.transmissibility();
}
return transmissibility;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RicExportFractureCompletionsImpl::calculateAndSetReportItemData(
const std::vector<RigCompletionData>& allCompletionsForOneFracture,
const RigEclipseToStimPlanCalculator& eclToFractureCalc,
RicWellPathFractureReportItem& reportItem)
{
double areaWeightedMatrixPermeability = eclToFractureCalc.areaWeightedMatrixPermeability();
reportItem.setAreaWeightedPermeability(areaWeightedMatrixPermeability);
double totalAreaOpenForFlow = eclToFractureCalc.totalEclipseAreaOpenForFlow();
double areaWeightedConductivity = eclToFractureCalc.areaWeightedConductivity();
if (totalAreaOpenForFlow > 0.0)
{
double halfLength = 0.0;
double height = eclToFractureCalc.longestYSectionOpenForFlow();
if (height > 0.0)
{
double length = totalAreaOpenForFlow / height;
halfLength = length / 2.0;
}
reportItem.setHeightAndHalfLength(height, halfLength);
}
double aggregatedTransmissibility = sumUpTransmissibilities(allCompletionsForOneFracture);
reportItem.setData(aggregatedTransmissibility, allCompletionsForOneFracture.size(), totalAreaOpenForFlow);
reportItem.setWidthAndConductivity(eclToFractureCalc.areaWeightedWidth(), areaWeightedConductivity);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RicExportFractureCompletionsImpl::outputIntermediateResultsText(QTextStream* outputStreamForIntermediateResultsText,
const RimFracture* fracture,
RigTransmissibilityCondenser& transCondenser,
const RigMainGrid* mainGrid,
const RigFractureGrid* fractureGrid)
{
(*outputStreamForIntermediateResultsText)
<< "\n"
<< "\n"
<< "\n----------- All Transmissibilities " << fracture->name() << " -------------------- \n\n";
(*outputStreamForIntermediateResultsText)
<< QString::fromStdString(transCondenser.neighborTransDebugOutput(mainGrid, fractureGrid));
(*outputStreamForIntermediateResultsText)
<< "\n"
<< "\n"
<< "\n----------- Condensed Results " << fracture->name() << " -------------------- \n\n";
(*outputStreamForIntermediateResultsText)
<< QString::fromStdString(transCondenser.condensedTransDebugOutput(mainGrid, fractureGrid));
(*outputStreamForIntermediateResultsText) << "\n";
}